精英家教网 > 高中数学 > 题目详情
9.已知直线y=kx-3与圆x2+y2+2x-4y-4=0相交且经过圆心,则k=-5.

分析 将圆的方程化为标准式,求出圆心坐标,代入直线方程求出k的值.

解答 解:由x2+y2+2x-4y-4=0得,
圆的标准方程是(x+1)2+(y-2)2=9,
则圆心坐标是(-1,2),
∵直线y=kx-3与圆x2+y2+2x-4y-4=0相交且经过圆心,
∴2=-k-3,得k=-5,
故答案为:-5.

点评 本题考查圆的一般式方程,点、直线与圆的位置关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知直线l过点A(-2,-1),直线l的一个方向向量为(1,1),抛物线Γ的方程为y=ax2
(1)求直线l的方程;
(2)若直线l与抛物线Γ交于B,C两点,且|BC|是|AB|和|AC|的等比中项,求抛物线Γ的方程;
(3)设抛物线Γ的焦点为F,问:是否存在正整数a,使得抛物线Γ上至少有一点P,满足|PF|=|PA|,若存在,求出所有这样的正整数a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.点P在曲线E:y=ex上,若存在过P的直线交曲线E于另一点A,交直线l:y=x-1于点B,且|PA|=|AB|,则称点P为“好点”,那么下列结论中正确的是(  )
A.曲线E上的所有点都是“好点”
B.曲线E上仅有有限个点是“好点”
C.曲线E上的所有点都不是“好点”
D.曲线E上有无穷多个点(但不是所有的点)是“好点”

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知抛物线C:x2=2py(p>0),圆E:x2+(y+1)2=1,若直线L与抛物线C和圆E分别相切于点A,B(A,B不重合)
(Ⅰ)当p=1时,求直线L的方程;
(Ⅱ)点F是抛物线C的焦点,若对于任意的p>0,记△ABF面积为S,求$\frac{S}{{\sqrt{p+1}}}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,已知点P是圆锥母线SA的中点,Q是底面圆周上的点,M是线段PQ的中点,当点Q在圆周上运动一周时,点M的轨迹是(  )
A.线段B.C.椭圆D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知实数a,b,c,d成等比数列,对于函数y=lnx-x,当x=b时取到极大值c,则ad等于-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.直线l:x-3y+4=0与圆(x-a)2+y2=5相交于A、B两点,设点P是直线l与x轴的交点,若点A恰好是线段PB的中点,则a=-4$±3\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若函数f(x)=x3-(4+log2a)x+2在(0,2]上有两个零点,则实数a的取值范围是(  )
A.$(\frac{1}{4},\left.1]\right.$B.($\frac{1}{2}$,2]C.[1,4)D.[2,8)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知等比数列{an}的前n项和是Sn,若S30=13S10,S10+S30=140,则S25的值为45$\sqrt{3}$-5或-45$\sqrt{3}$-5.

查看答案和解析>>

同步练习册答案