精英家教网 > 高中数学 > 题目详情
1.直线l:x-3y+4=0与圆(x-a)2+y2=5相交于A、B两点,设点P是直线l与x轴的交点,若点A恰好是线段PB的中点,则a=-4$±3\sqrt{5}$.

分析 由题意画出图形,求出圆心到直线的距离,然后求解三角形得答案.

解答 解:如图,C到直线l:x-3y+4=0的距离d=$\frac{|a+4|}{5}$,

过C作CD⊥AB于D,设AB=2t,则AD=t,
在Rt△ADC中,有t2+d2=5,即${t}^{2}+\frac{(a+4)^{2}}{25}=5$,①
在Rt△PDC中,有$9{t}^{2}+\frac{(a+4)^{2}}{25}=(a+4)^{2}$,②
联立①②解得:a=-4$±3\sqrt{5}$.
故答案为:$-4±3\sqrt{5}$.

点评 本题考查直线与圆的位置关系,考查了点到直线距离公式的运用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.解不等式|x-1|+|2x+2|>5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.若数列bn=$\frac{n-2}{{2}^{n}}$,如果对任意的n∈N*,都有$\frac{7}{8}$+bn≤t2恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知直线y=kx-3与圆x2+y2+2x-4y-4=0相交且经过圆心,则k=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知直线l:y=x+b,圆C:x2+y2+2ax-2ay+2a2-4a=0(a>0).
(1)当b=4时,求直线l被圆C所截得的弦长的最大值;
(2)当b=1时,是否存在a,使得l与圆C交于A、B两点,且满足$\overrightarrow{OA}•\overrightarrow{OB}$=1?若存在,求出a值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如果圆C:(x-a)2+(y-a)2=200上总存在两个点到原点的距离为5$\sqrt{2}$,则圆心C到直线3x+4y=0距离d的取值范围是(7,21).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知圆F1:(x+1)2+y2=r2与F2:(x-1)2+y2=(4-r)2(0<r<4)的公共点的轨迹为曲线E
(Ⅰ)求E的方程;
(Ⅱ)如图,动直线l:y=kx+m与椭圆E有且仅有一个公共点,点M,N是直线l上的两点,且F1M⊥l,F2N⊥l,求四边形F1MNF2面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知正三棱锥S-ABC中,SA=x,AB=1,SA与BC的距离为d,则$\underset{lim}{x→1}$d=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知集合A={(x,y)|x+y=1},集合B={(x,y)|x-2y=4},求A∩B,说明其几何意义,并在平面直角坐标系中表示出来.

查看答案和解析>>

同步练习册答案