精英家教网 > 高中数学 > 题目详情
11.已知集合A={(x,y)|x+y=1},集合B={(x,y)|x-2y=4},求A∩B,说明其几何意义,并在平面直角坐标系中表示出来.

分析 联立A与B中两方程组成方程组,求出方程组的解得到A与B的交集,在平面直角坐标系中表示出来即可.

解答 解:联立得:$\left\{\begin{array}{l}{x+y=1①}\\{x-2y=4②}\end{array}\right.$,
①-②得:3y=-3,即y=-1,

把y=-1代入①得:x=2,
∴方程组的解为$\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$,A∩B表示的几何意义为A与B中两函数图象的交点,
则A∩B={(2,-1)},

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.直线l:x-3y+4=0与圆(x-a)2+y2=5相交于A、B两点,设点P是直线l与x轴的交点,若点A恰好是线段PB的中点,则a=-4$±3\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.实数a,b满足$\frac{1}{1-{2}^{a}}$+$\frac{1}{1-{2}^{b+1}}$=1,则a+b=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知等比数列{an}的前n项和是Sn,若S30=13S10,S10+S30=140,则S25的值为45$\sqrt{3}$-5或-45$\sqrt{3}$-5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,已知|$\overrightarrow{OA}$|=2,|$\overrightarrow{OB}$|=2$\sqrt{3}$,$\overrightarrow{OA}$•$\overrightarrow{OB}$=0点C在线段AB上,∠AOC=30°,用$\overrightarrow{OA}$和$\overrightarrow{OB}$来表示向量$\overrightarrow{OC}$,则$\overrightarrow{OC}$等于$\frac{3}{4}\overrightarrow{OA}$+$\frac{1}{4}\overrightarrow{OB}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.通讯卫星C在赤道上空3R(R为地球半径)的轨道上,它每24小时绕地球一周,所以它定位于赤道上某一点的上空.如果此点与某地A(北纬60°)在同一条子午在线,则在A观察此卫星的仰角的正切值为$\frac{3}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.焦点在x轴上的双曲线,虚半轴长为1,离心率为$\frac{2\sqrt{3}}{3}$.
(1)求双曲线的标准方程;
(2)已知直线l过点(4,-2),且与双曲线有一个公共点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知点A($\sqrt{2}$,0)与圆O:x2+y2=1上B,C两点共线,当△OBC的面积最大时,O到AB的距离为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{6}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xOy中,直线x+y-2=0在矩阵A=$[\begin{array}{l}{1}&{a}\\{1}&{2}\end{array}]$对应的变换作用下得到直线x+y-b=0(a,b∈R),求a+b的值.

查看答案和解析>>

同步练习册答案