精英家教网 > 高中数学 > 题目详情
16.通讯卫星C在赤道上空3R(R为地球半径)的轨道上,它每24小时绕地球一周,所以它定位于赤道上某一点的上空.如果此点与某地A(北纬60°)在同一条子午在线,则在A观察此卫星的仰角的正切值为$\frac{3}{6}$.

分析 先过点A作圆的切线交BC于D,得到在A观察此卫星的仰角,再在三角形ABC中利用余弦定理求出角BAC的余弦值,再利用三角函数的同角公式得出其正切值,最后利用诱导公式即可求出仰角的正切值.

解答 解:过点A作圆的切线交BC于D,则在A观察此卫星的仰角就是∠CAD.
在三角形ABC中,由余弦定理得,AC2=AB2+BC2-2AB•BCcos60°=R2+(4R)2-2R•4R×$\frac{1}{2}$=13R2
∴cos∠BAC=$\frac{A{B}^{2}+A{C}^{2}-B{C}^{2}}{2AB•AC}$=$\frac{{R}^{2}+13{R}^{2}-16{R}^{2}}{2R•\sqrt{13}R}=-\frac{1}{\sqrt{13}}$,
∴tan∠BAC=-2$\sqrt{3}$,
则在A观察此卫星的仰角的正切值为tan∠CAD=tan(∠BAC-90°)=-$\frac{1}{tan∠B∠AC}=\frac{\sqrt{3}}{6}$.
故答案为:$\frac{{\sqrt{3}}}{6}$.

点评 本题主要考查了与圆有关的比例线段,考查了切线的性质,以及解三角形等基本知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.如果圆C:(x-a)2+(y-a)2=200上总存在两个点到原点的距离为5$\sqrt{2}$,则圆心C到直线3x+4y=0距离d的取值范围是(7,21).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=cosx+xsinx-a,x∈(-π,π),若f(x)有4个零点,则a的取值范围为(  )
A.(-1,1)B.(1,$\frac{π}{2}$)C.(0,$\frac{π}{2}$)D.(-1,$\frac{π}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若不等式$\frac{2x+a}{x+b}$≤1的解集为{x|2<x≤3},则a+b的值是-7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知集合A={(x,y)|x+y=1},集合B={(x,y)|x-2y=4},求A∩B,说明其几何意义,并在平面直角坐标系中表示出来.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知平面四边形ABCD中,DA=AB=BC,AB⊥AD,∠ABC=135°,现沿对角线BD将△ABD折起,使平面ABD⊥平面CBD
(Ⅰ)求证:AD⊥平面ABC;
(II)在线段AC上是否存在一个点P,使得直线DP和平面ABC所成角为60°?若存在,确定点P的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上存在点M(x0,y0),使得由M向圆O:x2+y2=b2所引的两条切线MP,MQ互相垂直,其其切点分别记为P,Q.
(1)试用a,b表示x02-y02的值;
(2)求满足上述条件的椭圆C的离心率e的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=lnx.
(I)求函数g(x)=x-1-f(x)的极小值;
(Ⅱ)若关于x的不等式mf(x)≥$\frac{x-1}{x+1}$在[1,+∞)上恒成立,求实数m的取值范围;
(Ⅲ)已知a∈(0,$\frac{π}{2}$),试比较f(tana)与-cos2a的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,F1,F2分别为椭圆的上、下焦点,过点F2作直线l与椭圆C交于不同的两点A,B,若△ABF1的周长为4$\sqrt{2}$.
(1)求椭圆C的标准方程;
(2)P是y轴上一点,以PA,PB为邻边作平行四边形PAQB,若点P的坐标为(0,-2),求平行四边形PAQB对角线PQ的长度的取值范围.

查看答案和解析>>

同步练习册答案