7£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬F1£¬F2·Ö±ðΪÍÖÔ²µÄÉÏ¡¢Ï½¹µã£¬¹ýµãF2×÷Ö±ÏßlÓëÍÖÔ²C½»ÓÚ²»Í¬µÄÁ½µãA£¬B£¬Èô¡÷ABF1µÄÖܳ¤Îª4$\sqrt{2}$£®
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©PÊÇyÖáÉÏÒ»µã£¬ÒÔPA£¬PBΪÁÚ±ß×÷ƽÐÐËıßÐÎPAQB£¬ÈôµãPµÄ×ø±êΪ£¨0£¬-2£©£¬ÇóƽÐÐËıßÐÎPAQB¶Ô½ÇÏßPQµÄ³¤¶ÈµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©ÓÉ¡÷ABF1µÄÖܳ¤Îª4$\sqrt{2}$£¬ÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬Çó³öa£¬b£¬ÓÉ´ËÄÜÇó³öÍÖÔ²CµÄ±ê×¼·½³Ì£®
£¨2£©ÉèÖ±ÏßlµÄ·½³ÌΪy=kx-1£¬´úÈëÍÖÔ²·½³Ì£¬µÃ£¨2+k2£©x2-2kx-1=0£¬ÓÉ´ËÀûÓÃΤ´ï¶¨Àí¡¢ÏÒ³¤¹«Ê½¡¢»»Ôª·¨£¬½áºÏÒÑÖªÌõ¼þÄÜÇó³öƽÐÐËıßÐÎPAQB¶Ô½ÇÏßPQµÄ³¤¶ÈµÄȡֵ·¶Î§£®

½â´ð ½â£º£¨1£©¡ß¡÷ABF1µÄÖܳ¤Îª4$\sqrt{2}$£¬¡à4a=4$\sqrt{2}$£¬
½âµÃa=$\sqrt{2}$£¬
ÓÖe=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬¡àc=1£¬¡àb=$\sqrt{2-1}$=1£¬
¡àÍÖÔ²CµÄ±ê×¼·½³ÌΪ${x}^{2}+\frac{{y}^{2}}{2}$=1£®
£¨2£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ABÖеãE£¨x0£¬y0£©£¬
µ±Ö±ÏßбÂʲ»´æÔÚʱ²»³ÉÁ¢£¬
¡àÉèÖ±ÏßlµÄ·½³ÌΪy=kx-1£¬¢Ù
½«¢Ù´úÈëÍÖÔ²·½³Ì${x}^{2}+\frac{{y}^{2}}{2}$=1£¬ÕûÀíµÃ£º£¨2+k2£©x2-2kx-1=0£¬
¡à${x}_{1}+{x}_{2}=\frac{2k}{2+{k}^{2}}$£¬${x}_{1}{x}_{2}=\frac{-1}{2+{k}^{2}}$£¬
${x}_{0}=\frac{k}{2+{k}^{2}}$£¬${y}_{0}=k•{x}_{0}-1=\frac{-2}{2+{k}^{2}}$£¬
|PE|=$\sqrt{£¨{x}_{0}-0£©^{2}+£¨{y}_{0}+2£©^{2}}$
=$\sqrt{£¨\frac{k}{2+{k}^{2}}£©^{2}+£¨2-\frac{2}{2+{k}^{2}}£©^{2}}$
=$\sqrt{\frac{{k}^{2}}{£¨2+{k}^{2}£©^{2}}+\frac{4£¨1+{k}^{2}£©^{2}}{£¨2+{k}^{2}£©^{2}}}$£¬
Áît=2+k2£¬Ôòt¡Ê[2£¬+¡Þ£©£¬¡à$\frac{1}{t}$¡Ê£¨0£¬$\frac{1}{2}$]£¬
¡à|PE|=$\sqrt{\frac{t-2+4£¨t-1£©^{2}}{{t}^{2}}}$=$\sqrt{\frac{4{t}^{2}-7t+2}{{t}^{2}}}$=$\sqrt{\frac{2}{{t}^{2}}-\frac{7}{t}+4}$=$\sqrt{2£¨\frac{1}{t}-\frac{7}{4}£©^{2}-\frac{17}{8}}$¡Ê[1£¬2£©£®
¡àƽÐÐËıßÐÎPAQB¶Ô½ÇÏßPQµÄ³¤¶ÈµÄȡֵ·¶Î§ÊÇ[1£¬2£©£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éƽÐÐËıßÐζԽÇÏߵij¤¶ÈµÄȡֵ·¶Î§µÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâΤ´ï¶¨Àí¡¢ÏÒ³¤¹«Ê½¡¢»»Ôª·¨¡¢ÍÖÔ²ÐÔÖʵĺÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®Í¨Ñ¶ÎÀÐÇCÔÚ³àµÀÉÏ¿Õ3R£¨RΪµØÇò°ë¾¶£©µÄ¹ìµÀÉÏ£¬Ëüÿ24Ð¡Ê±ÈÆµØÇòÒ»ÖÜ£¬ËùÒÔËü¶¨Î»ÓÚ³àµÀÉÏijһµãµÄÉϿգ®Èç¹û´ËµãÓëijµØA£¨±±Î³60¡ã£©ÔÚͬһÌõ×ÓÎçÔÚÏߣ¬ÔòÔÚA¹Û²ì´ËÎÀÐǵÄÑö½ÇµÄÕýÇÐֵΪ$\frac{3}{6}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÒÑÖªaΪÕýÕûÊý£¬f£¨x£©=ax2+4ax-2x+4a-7£¬Èôy=f£¨x£©ÖÁÉÙÓÐÒ»¸öÁãµãx0ÇÒx0ΪÕûÊý£¬ÔòaµÄȡֵΪ1»ò5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªº¯Êýf£¨x£©=£¨x2+ax-2a-3£©ex£¬ÆäÖÐa¡ÊR£¬e=2.71828¡­Îª×ÔÈ»¶ÔÊýµÄµ×Êý£®
£¨1£©ÌÖÂÛº¯Êýf£¨x£©µÄµ¥µ÷ÐÔ£»
£¨2£©µ±x¡Ê[0£¬1]ʱ£¬Èôº¯Êýf£¨x£©µÄͼÏóºãÔÚÖ±Ïßy=eµÄÉÏ·½£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Ö±Ïßx+y-2=0ÔÚ¾ØÕóA=$[\begin{array}{l}{1}&{a}\\{1}&{2}\end{array}]$¶ÔÓ¦µÄ±ä»»×÷ÓÃϵõ½Ö±Ïßx+y-b=0£¨a£¬b¡ÊR£©£¬Çóa+bµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÈçͼËùʾ£¬Æ½ÐÐËıßÐÎABCDÖУ¬MΪDCµÄÖе㣬NÊÇBCµÄÖе㣬Éè$\overrightarrow{AB}$=$\overrightarrow{b}$£¬$\overrightarrow{AD}$=$\overrightarrow{d}$£¬$\overrightarrow{AM}$=$\overrightarrow{m}$£¬$\overrightarrow{AN}$=$\overrightarrow{n}$£®
£¨1£©ÊÔÒÔ$\overrightarrow{b}$£¬$\overrightarrow{d}$Ϊ»ùµ×±íʾ$\overrightarrow{MN}$£»
£¨2£©ÊÔÒÔ$\overrightarrow{m}$£¬$\overrightarrow{n}$Ϊ»ùµ×±íʾ$\overrightarrow{AB}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÒÑÖªÖ±ÏßL£ºy=x+bÓëÔ²O£ºx2+y2=4ÏཻÓÚA¡¢BÁ½µã£¬ÇÒ¡÷AOBµÄÃæ»ýµÈÓÚ$\sqrt{3}$£¬Ôò³£ÊýbµÄֵΪ¡À$\sqrt{6}$»ò¡À$\sqrt{2}$£®£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÒÑÖªA£¨2£¬3£©£¬B£¨-1£¬5£©£¬ÇÒ$\overrightarrow{AC}$=$\frac{1}{3}$$\overrightarrow{AB}$£¬$\overrightarrow{AD}$=3$\overrightarrow{AB}$£¬Ôò$\overrightarrow{CD}$µÄ×ø±êΪ£¨-8£¬$\frac{16}{3}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®£¨1£©ÒÑÖªÍÖÔ²£º$\frac{{x}^{2}}{9}$+y2=1£¬¹ý×ó½¹µãF×÷Çãб½ÇΪ$\frac{¦Ð}{6}$µÄÖ±Ïß½»ÍÖÔ²A¡¢BÁ½µã£¬ÇóÏÒABµÄ³¤£»
£¨2£©ÒÑÖªÍÖÔ²4x2+y2=1¼°Ö±Ïßy=x+m£¬ÈôÖ±Ïß±»ÍÖÔ²½ØµÃµÄÏÒ³¤Îª$\frac{2\sqrt{10}}{5}$£¬ÇóÖ±Ïߵķ½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸