精英家教网 > 高中数学 > 题目详情
4.焦点在x轴上的双曲线,虚半轴长为1,离心率为$\frac{2\sqrt{3}}{3}$.
(1)求双曲线的标准方程;
(2)已知直线l过点(4,-2),且与双曲线有一个公共点,求直线l的方程.

分析 (1)利用双曲线的虚半轴长,以及离心率,求解双曲线的几何量,即可得到双曲线方程.
(2)判断点与双曲线的位置关系,利用双曲线的简单性质求解直线的斜率,然后求解直线方程.

解答 解:(1)焦点在x轴上的双曲线,虚半轴长为1,离心率为$\frac{2\sqrt{3}}{3}$.
可得b=1,$\frac{c}{a}$=$\frac{2\sqrt{3}}{3}$,
即$\frac{{a}^{2}+{b}^{2}}{{a}^{2}}=\frac{4}{3}$,
解得a2=3.
所求的双曲线方程为:$\frac{{x}^{2}}{3}-{y}^{2}=1$.
(2)由双曲线的方程可知:
x=4时,y=±$\frac{\sqrt{39}}{3}$,$-\frac{\sqrt{39}}{3}<-2<0$,
可知点(4,-2)在双曲线内部,直线l过点(4,-2),且与双曲线有一个公共点,可知直线的斜率为:$±\sqrt{3}$.
所求的直线方程为:y+2=$±\sqrt{3}$(x-4).
直线l的方程:$\sqrt{3}x$-y-6=0或$\sqrt{3}x$+y-2=0.

点评 本题考查了直线与圆锥曲线的位置关系问题,双曲线方程的求法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知圆F1:(x+1)2+y2=r2与F2:(x-1)2+y2=(4-r)2(0<r<4)的公共点的轨迹为曲线E
(Ⅰ)求E的方程;
(Ⅱ)如图,动直线l:y=kx+m与椭圆E有且仅有一个公共点,点M,N是直线l上的两点,且F1M⊥l,F2N⊥l,求四边形F1MNF2面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知如图平行四边形ABCD中,点E是CD的中点,$\overrightarrow{BE}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow{b}$,用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{CD}$,$\overrightarrow{BD}$(写出解题过程)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知集合A={(x,y)|x+y=1},集合B={(x,y)|x-2y=4},求A∩B,说明其几何意义,并在平面直角坐标系中表示出来.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设点P为圆C1:x2+y2=2上的动点,过点P作x轴的垂线,垂足为Q,点M满足$\sqrt{2}$$\overrightarrow{MQ}$=$\overrightarrow{PQ}$.
(1)求点M的轨迹C2的方程;
(2)过直线x=2上的点T作圆C1的两条切线,设切点分别为A、B,若直线AB与(1)中的曲线C2交与C、D两点,求$\frac{{|{CD}|}}{{|{AB}|}}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上存在点M(x0,y0),使得由M向圆O:x2+y2=b2所引的两条切线MP,MQ互相垂直,其其切点分别记为P,Q.
(1)试用a,b表示x02-y02的值;
(2)求满足上述条件的椭圆C的离心率e的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.定点M(1,1),动A、B点在圆C:x2+y2=4上运动且MB垂直MA,则弦AB长度最小值为$\sqrt{6}$-$\sqrt{2}$..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若圆C:(x-$\frac{5}{2}$)2+(y-2)2=$\frac{25}{4}$上有4个点到直线x-y+a=0的距离为$\frac{1}{2}$,则实数a的取值范围为($-\frac{1}{2}-2\sqrt{2},-\frac{1}{2}+2\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图,平行四边形ABCD,点E、F分别是DC,BC的中点,$\overrightarrow{AC}$=$λ\overrightarrow{AE}$-$μ\overrightarrow{AF}$,则λ+μ=0.

查看答案和解析>>

同步练习册答案