精英家教网 > 高中数学 > 题目详情
5.解不等式|x-1|+|2x+2|>5.

分析 由绝对值的意义,讨论x>1,x<-1和-1≤x≤1,去掉绝对值,化简计算,最后求并集即可得到所求解集.

解答 解:|x-1|+|2x+2|>5,
当x>1时,x-1+2x+2>5,即x>$\frac{4}{3}$,可得x>$\frac{4}{3}$;
当x<-1时,1-x-2x-2>5,即x<-2,可得x<-2;
当-1≤x≤1时,1-x+2x+2>5,即x>2,可得x∈∅.
综上可得,原不等式的解集为(-∞,-2)∪($\frac{4}{3}$,+∞).

点评 本题考查绝对值不等式的解法,注意运用绝对值的意义和分类讨论的思想方法,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.若正三棱柱的所有棱长均为a,且其体积为2$\sqrt{3}$,则此三棱柱外接球的表面积是(  )
A.$\frac{8}{3}$πB.$\frac{28}{3}$πC.D.$\frac{4}{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数 y=f(x)的反函数为y=log2x,则 f(-1)=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知直线l过点A(-2,-1),直线l的一个方向向量为(1,1),抛物线Γ的方程为y=ax2
(1)求直线l的方程;
(2)若直线l与抛物线Γ交于B,C两点,且|BC|是|AB|和|AC|的等比中项,求抛物线Γ的方程;
(3)设抛物线Γ的焦点为F,问:是否存在正整数a,使得抛物线Γ上至少有一点P,满足|PF|=|PA|,若存在,求出所有这样的正整数a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求极限:$\underset{lim}{n→∞}$$\frac{{a}^{n+1}-{2}^{n-1}}{{a}^{n-1}+{2}^{n+1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.(文科)把函数y=log2(2x-3)+4的图象按向量$\overrightarrow{a}$平移后得到函数y=log2(2x)的图象,则$\overrightarrow{a}$=(  )
A.(-$\frac{3}{2}$,4)B.(-$\frac{3}{2}$,-4)C.($\frac{3}{2}$,-4)D.(-3,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.定义:由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”.如果两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将三角形的相似比称为椭圆的相似比.已知椭圆C1:$\frac{{x}^{2}}{4}$+y2=1.
(1)若椭圆C2:$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1,判断C2与C1是否相似?如果相似,求出C2与C1的相似比;如果不相似,请说明理由;
(2)写出与椭圆C1相似且焦点在x轴上、短半轴长为b的椭圆Cb的标准方程;若在椭圆Cb上存在两点M、N关于直线y=x+1对称,求实数b的取值范围;
(3)如图:直线y=x与两个“相似椭圆”M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1和
Mλ:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=λ2(a>bo,0<λ<1)分别交于点A,B和点C,D,试在椭圆M和椭圆Mλ上分别作出点E和点F(非椭圆顶点),使△CDF和△ABE组成以λ为相似比的两个相似三角形,写出具体作法.(不必证明)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.点P在曲线E:y=ex上,若存在过P的直线交曲线E于另一点A,交直线l:y=x-1于点B,且|PA|=|AB|,则称点P为“好点”,那么下列结论中正确的是(  )
A.曲线E上的所有点都是“好点”
B.曲线E上仅有有限个点是“好点”
C.曲线E上的所有点都不是“好点”
D.曲线E上有无穷多个点(但不是所有的点)是“好点”

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.直线l:x-3y+4=0与圆(x-a)2+y2=5相交于A、B两点,设点P是直线l与x轴的交点,若点A恰好是线段PB的中点,则a=-4$±3\sqrt{5}$.

查看答案和解析>>

同步练习册答案