精英家教网 > 高中数学 > 题目详情
18.若函数f(x)=x3-(4+log2a)x+2在(0,2]上有两个零点,则实数a的取值范围是(  )
A.$(\frac{1}{4},\left.1]\right.$B.($\frac{1}{2}$,2]C.[1,4)D.[2,8)

分析 根据函数零点的定义,分离参数,构造函数,利用导数求出函数的最值,即可求出a的范围.

解答 解:∵函数f(x)=x3-(4+log2a)x+2在(0,2]上有两个零点,
∴log2a=x2+$\frac{2}{x}$-4在(0,2]上有两解,
设g(x)=x2+$\frac{2}{x}$-4,
则g′(x)=2x-$\frac{2}{{x}^{2}}$,得
x∈(0,1)时,g′(x)<0,g(x)单调递减,
x∈(1,2)时,g′(x)>0,g(x)单调递增,
又g(1)=-1,g(2)=1,
∴-1<log2a≤1,
∴$\frac{1}{2}$<a≤2,
故选:B

点评 本题考查了函数零点的定义以及导数和函数的最值的关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知动点P到直线x=-$\frac{1}{2}$的距离等于到定点C($\frac{1}{2}$,0)的距离.
(1)求动点P的轨迹方程;
(2)若在y轴上截距为2的直线l与点P的轨迹交于M、N两点,O为坐标原点,且以MN为直径的圆过原点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知直线y=kx-3与圆x2+y2+2x-4y-4=0相交且经过圆心,则k=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如果圆C:(x-a)2+(y-a)2=200上总存在两个点到原点的距离为5$\sqrt{2}$,则圆心C到直线3x+4y=0距离d的取值范围是(7,21).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知圆F1:(x+1)2+y2=r2与F2:(x-1)2+y2=(4-r)2(0<r<4)的公共点的轨迹为曲线E
(Ⅰ)求E的方程;
(Ⅱ)如图,动直线l:y=kx+m与椭圆E有且仅有一个公共点,点M,N是直线l上的两点,且F1M⊥l,F2N⊥l,求四边形F1MNF2面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.对任意实数m,n定义运算⊕:m⊕n=$\left\{\begin{array}{l}n,m-n≥1\\ m,m-n<1\end{array}$,已知函数f(x)=(x2-1)⊕(4+x),若函数F(x)=f(x)-b恰有三个零点,则实数b的取值范围为-1<b≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知正三棱锥S-ABC中,SA=x,AB=1,SA与BC的距离为d,则$\underset{lim}{x→1}$d=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=cosx+xsinx-a,x∈(-π,π),若f(x)有4个零点,则a的取值范围为(  )
A.(-1,1)B.(1,$\frac{π}{2}$)C.(0,$\frac{π}{2}$)D.(-1,$\frac{π}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上存在点M(x0,y0),使得由M向圆O:x2+y2=b2所引的两条切线MP,MQ互相垂直,其其切点分别记为P,Q.
(1)试用a,b表示x02-y02的值;
(2)求满足上述条件的椭圆C的离心率e的取值范围.

查看答案和解析>>

同步练习册答案