椭圆的左焦点为,直线与椭圆相交于点、,当的周长最大时,的面积是____________.
解析试题分析:设椭圆的右焦点为E.如图:
由椭圆的定义得:△FAB的周长:AB+AF+BF=AB+(4a-AE)+(4a-BE)=8a+AB-AE-BE;
∵AE+BE≥AB;
∴AB-AE-BE≤0,当AB过点E时取等号;
∴AB+AF+BF=8a+AB-AE-BE≤8a;
即直线x=m过椭圆的右焦点E时△FAB的周长最大;
此时△FAB的高为:EF=2a.
此时直线x=m=c=a;
把x=a代入椭圆
的方程得:y=±.
∴AB=3a.
所以:△FAB的面积等于:S△FAB=×3a×2a=.
考点:本题主要考查椭圆的几何性质,直线与椭圆的位置关系.
点评:在解决涉及到圆锥曲线上的点与焦点之间的关系的问题中,圆锥曲线的定义往往是解题的突破口.解决本题的关键在于利用定义求出周长的表达式.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com