精英家教网 > 高中数学 > 题目详情

椭圆的左、右焦点分别为F1、F2,过椭圆的右焦点F2作一条直线l交椭圆与P、Q两点,则△F1PQ内切圆面积的最大值是      

解析试题分析:因为三角形内切圆的半径与三角形周长的乘积是面积的2倍,且△F1PQ的周长是定值8,所以只需求出△F1PQ面积的最大值.
设直线l方程为x=my+1,与椭圆方程联立得(3m2+4)y2+6my-9=0,设P(x1,y1),Q(x2,y2),则

所以内切圆面积的最大值是
考点:椭圆的简单性质。
点评:本题以椭圆为载体,考查直线与椭圆的位置关系,考查面积的最值,解题的关键是转化为求△F1PQ面积的最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

若正三角形的一个顶点在原点,另两个顶点在抛物线上,则这个三角形的面积为         

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

为双曲线()的两个焦点, 若F1  、F2是正三角形的三个顶点,则双曲线的离心率为    

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

,,△的周长是,则的顶点的轨迹方程为___  ________

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

设F为抛物线y2=4x的焦点,A、B、C为该抛物线上三点,若=0,则||+||+||=___________。

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

在双曲线上运动,为坐标原点,线段中点的轨迹方程是  

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

若抛物线的焦点与双曲线的左焦点重合,则实数=    

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知椭圆的左焦点,为坐标原点,点在椭圆上,点在椭圆的右准线上,若,则椭圆的离心率为   

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

①若,则方程有实根;
②“若,则”的否命题;
③“矩形的对角线相等”的逆命题;
④“若,则至少有一个为零”的逆否命题 .
以上命题中的真命题有_______________。

查看答案和解析>>

同步练习册答案