精英家教网 > 高中数学 > 题目详情
6.已知四面体ABCD的外接球球心O在棱CD上,$AB=\sqrt{3}$,CD=2,则A、B两点在四面体ABCD的外接球上的球面距离是$\frac{2π}{3}$.

分析 根据球心到四个顶点距离相等可推断出O为CD的中点,且OA=OB=OC=OD,进而在△A0B中,利用余弦定理求得cos∠AOB的值,则∠AOB可求,进而根据弧长的计算方法求得答案.

解答 解:球心到四个顶点距离相等,故球心O在CD中点,则OA=OB=OC=OD=1,
再由AB=$\sqrt{3}$,在△A0B中,利用余弦定理cos∠AOB=$\frac{1+1-3}{2×1×1}$=-$\frac{1}{2}$,
则∠AOB=$\frac{2π}{3}$,则弧AB=$\frac{2π}{3}$•1=$\frac{2π}{3}$.
故答案为:$\frac{2π}{3}$.

点评 本题主要考查了余弦定理的应用、四面体外接球的性质等,考查了学生观察分析和基本的运算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.某家庭游戏中有这样一个“投币”活动,活动道具是如图所示的半径为10cm的圆形纸板,纸板上有一个相同圆心、半径为2cm的小圆,现让家庭中的每名成员向此纸板抛掷一枚半径为1cm的硬币,使硬币整体随机落在纸板内,若硬币落下后与小圆圆面(不包含边界)无公共点则中奖,否则不中奖.
(1)求中奖的概率;
(2)若某家庭中有3名成员参与“投币”活动,记这3名成员中中奖的人数为E,求E的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.现定义一种运算“⊕”:对任意实数a,b,a⊕b=$\left\{\begin{array}{l}{b,a-b≥1}\\{a,a-b<1}\end{array}\right.$,设f(x)=(x2-2x)⊕(x+3),若函数g(x)=f(x)+k的图象与x轴恰有三个公共点,则实数k的取值范围是[-2,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.$\overrightarrow{z}$是复数z的共轭复数,若复数z满足$\frac{i}{\overline{z}}$=1+i,则z=

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.对一切实数x,令[x]为不大于x的最大整数,则函数f(x)=[x]称为取整函数.若${a_n}=f({\frac{n}{10}})$,n∈N*,Sn为数列{an}的前n项和,则$\frac{{{S_{2009}}}}{2010}$=100.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a,b,i的值分别为6,8,0,则输出a和i的值分别为(  )
A.0,3B.0,4C.2,3D.2,4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知各项不为0的等差数列{an}满足a4-2a${\;}_{7}^{2}$+3a8=0,数列{bn}是等比数列,且b7=a7,则b3b8b10=(  )
A.1B.8C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若函数f(x)在[a,b]上的值域为[$\frac{a}{2}$,$\frac{b}{2}$],则称函数f(x)为“和谐函数”.下列函数中:①g(x)=$\sqrt{x-1}$+$\frac{1}{4}$;②p(x)=$\frac{1}{x}$;③q(x)=lnx;④h(x)=x2.“和谐函数”的个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知△ABC中,内角A,B,C的对边分别为a,b,c,asinA=bsinB+(c-b)sinC,且bc=4,则△ABC的面积为$\sqrt{3}$.

查看答案和解析>>

同步练习册答案