精英家教网 > 高中数学 > 题目详情
1.对一切实数x,令[x]为不大于x的最大整数,则函数f(x)=[x]称为取整函数.若${a_n}=f({\frac{n}{10}})$,n∈N*,Sn为数列{an}的前n项和,则$\frac{{{S_{2009}}}}{2010}$=100.

分析 ${a_n}=f({\frac{n}{10}})$=$[\frac{n}{10}]$,n∈N*,当n=1,2,…,9时,an=0;当n=10,11,12,…,19时,an=1;…,即可得出S2009

解答 解:${a_n}=f({\frac{n}{10}})$=$[\frac{n}{10}]$,n∈N*
当n=1,2,…,9时,an=0;
当n=10,11,12,…,19时,an=1;…,
∴S2009=0+1×10+2×10+…+199×10+200×10
=10×$\frac{200×(200+1)}{2}$=201000,
则$\frac{{{S_{2009}}}}{2010}$=100.
故答案为:100.

点评 本题考查了取整函数、等差数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知Sn为数列{an}的前n项和,且向量$\overrightarrow{a}$=(-4,n),$\overrightarrow{b}$=(Sn,n+3)垂直.
(1)求数列{an}的通项公式;
(2)数列{$\frac{1}{(2{a}_{n}+1)n}$}前n项和为Tn,求证:Tn<$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}满足:$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$=$\frac{{n}^{2}}{2}$(n∈N*).
(1)求数列{an}的通项公式;
(2)若bn=anan+1,Sn为数列{bn}的前n项和,对于任意的正整数n,Sn>2λ-$\frac{1}{3}$恒成立,求Sn及实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知各项均为正数的数列{an}的前n项和Sn满足8Sn=a${\;}_{n}^{2}$+4an+3(∈N*),且a1<3.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=$\frac{{a}_{n}+3-3n}{{2}^{n-1}}$,设{bn}的前n项和为Tn,若不等式(-1)nλ<Tn+$\frac{n}{{2}^{n-1}}$对一切n∈N*恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=ax+2(a-1)在区间(-1,2)内存在零点,则实数a的取值范围为(  )
A.$(-∞,\;\;\frac{1}{2})∪(2,\;\;+∞)$B.$(\frac{1}{2},\;\;2)$C.$(-∞,\;\;\frac{1}{2}]∪[2,\;\;+∞)$D.$[\frac{1}{2},\;\;2]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知四面体ABCD的外接球球心O在棱CD上,$AB=\sqrt{3}$,CD=2,则A、B两点在四面体ABCD的外接球上的球面距离是$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.计算${(\;\frac{1}{2}\;)^{-2}}+lg2-lg\frac{1}{5}$的值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,A,B,C的对边分别是a,b,c,且2acosB=2c-b.
(Ⅰ)求A的大小;
(Ⅱ)若a=2,b+c=4,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和为Sn,且Sn=$\frac{3}{2}$an-1(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=2log3$\frac{{a}_{n}}{2}$+1,求$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+…+$\frac{1}{b{{\;}_{n-1}b}_{n}}$.

查看答案和解析>>

同步练习册答案