分析 (1)利用递推关系即可得出an.
(2)利用“裂项求和”可得Sn,再利用数列的单调性与不等式的性质即可得出.
解答 解:(1)∵$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$=$\frac{{n}^{2}}{2}$(n∈N*),
∴当n=1时,$\frac{1}{{a}_{1}}$=$\frac{1}{2}$,解得a1=2.
当n≥2时,$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n-1}}$=$\frac{(n-1)^{2}}{2}$(n∈N*).
∴$\frac{1}{{a}_{n}}$=$\frac{{n}^{2}}{2}$-$\frac{(n-1)^{2}}{2}$,
解得an=$\frac{2}{2n-1}$,当n=1时也成立.
(2)bn=anan+1=$\frac{4}{(2n-1)(2n+1)}$=2$(\frac{1}{2n-1}-\frac{1}{2n+1})$.
∴数列{bn}的前n项和Sn=$2[(1-\frac{1}{3})$+$(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{2n-1}-\frac{1}{2n+1})]$=2$(1-\frac{1}{2n+1})$,
∵对于任意的正整数n,Sn>2λ-$\frac{1}{3}$恒成立,
∴λ<$\frac{7}{6}$-$\frac{1}{2n+1}$.
∴λ<$\frac{5}{6}$.
∴实数λ的取值范围是$(-∞,\frac{5}{6})$.
点评 本题考查了递推关系、“裂项求和”、数列的单调性与不等式的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 1或i | C. | i | D. | -i |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com