精英家教网 > 高中数学 > 题目详情
9.已知各项均为正数的数列{an}的前n项和Sn满足8Sn=a${\;}_{n}^{2}$+4an+3(∈N*),且a1<3.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=$\frac{{a}_{n}+3-3n}{{2}^{n-1}}$,设{bn}的前n项和为Tn,若不等式(-1)nλ<Tn+$\frac{n}{{2}^{n-1}}$对一切n∈N*恒成立,求实数λ的取值范围.

分析 (1)利用递推关系与等差数列的通项公式即可得出;
(2)利用“错位相减法”与等比数列的前n项和公式可得Tn,对n分类讨论即可得出.

解答 解:(1)∵$8{S_n}={a_n}^2+4{a_n}+3$,
∴8Sn-1=${a}_{n-1}^{2}$+4an-1+3 (n≥2),
∴$8({S_n}-{S_{n-1}})={a_n}^2+4{a_n}-{a^2}_{n-1}-4{a_{n-1}}$,
∴${a_n}^2-{a^2}_{n-1}=4({a_n}+{a_{n-1}})$,
∵an>0,∴an-an-1=4(n≥2).
∴数列{an}是以4为公差的等差数列,
又∵$8{S_1}={a_1}^2+4{a_1}+3$,
∴${a_1}^2-4{a_1}+3=0$而a1<3,
∴a1=1,
∴an=4n-3 (n∈N*).
(2)${b_n}=\frac{n}{{{2^{n-1}}}}$,
${T_n}=1×\frac{1}{2^0}+2×\frac{1}{2^1}+3×\frac{1}{2^2}+…+(n-1)×\frac{1}{{{2^{n-2}}}}+n×\frac{1}{{{2^{n-1}}}}$,
$\frac{{T}_{n}}{2}$=$\frac{1}{2}+2×\frac{1}{{2}^{2}}$+…+$(n-1)×\frac{1}{{2}^{n-1}}$+n×$\frac{1}{{2}^{n}}$,
两式相减得$\frac{T_n}{2}=\frac{1}{2^0}+\frac{1}{2^1}+\frac{1}{2^2}+…+\frac{1}{{{2^{n-1}}}}-n×\frac{1}{2^n}=2-\frac{n+2}{2^n}$,
∴${T_n}=4-\frac{n+2}{{{2^{n-1}}}}$,
∴${(-1)^n}λ<4-\frac{2}{{{2^{n-1}}}}$.
若n为偶数,则$λ<4-\frac{2}{{{2^{n-1}}}},{\;}∴λ<3$.
若n为奇数,则$-λ<4-\frac{2}{{{2^{n-1}}}}$,∴-λ<2,∴λ>-2.
∴-2<λ<3.

点评 本题考查了递推关系、等差数列与等比数列的通项公式及其前n项和公式、分类讨论方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知等差数列{an}的前n项Sn,若$\overrightarrow{OA}$=a10$\overrightarrow{OB}$+a2006$\overrightarrow{OC}$-3$\overrightarrow{OD}$且A、B、C、D四点共面(原点O不在此四点所确定的面内),则S2015=(  )
A.2015B.2016C.4030D.4032

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.复数z在复平面内对应的点为A,点B与点A关于坐标原点对称,将点B向右平移一个单位,再向上平移一个单位,得到点C,若点C与点A对应复数表示的向量互相垂直且OA=OC,则复数z为(  )
A.-1B.1或iC.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.现定义一种运算“⊕”:对任意实数a,b,a⊕b=$\left\{\begin{array}{l}{b,a-b≥1}\\{a,a-b<1}\end{array}\right.$,设f(x)=(x2-2x)⊕(x+3),若函数g(x)=f(x)+k的图象与x轴恰有三个公共点,则实数k的取值范围是[-2,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.△ABC的三个内角A,B,C,若$\frac{\sqrt{3}cosA+sinA}{\sqrt{3}sinA-cosA}$=tan(-$\frac{7}{12}$π),则tanA=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.$\overrightarrow{z}$是复数z的共轭复数,若复数z满足$\frac{i}{\overline{z}}$=1+i,则z=

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.对一切实数x,令[x]为不大于x的最大整数,则函数f(x)=[x]称为取整函数.若${a_n}=f({\frac{n}{10}})$,n∈N*,Sn为数列{an}的前n项和,则$\frac{{{S_{2009}}}}{2010}$=100.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知各项不为0的等差数列{an}满足a4-2a${\;}_{7}^{2}$+3a8=0,数列{bn}是等比数列,且b7=a7,则b3b8b10=(  )
A.1B.8C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知关于x的不等式|2x-1|-|x-1|≤a.
(Ⅰ)当a=3时,求不等式的解集;
(Ⅱ)若不等式有解,求实数a的取值范围.

查看答案和解析>>

同步练习册答案