【题目】已知函数
的值域是
,有下列结论:①当
时,
; ②当
时,
;③当
时,
; ④当
时,
.其中结论正确的所有的序号是( ).
A.①②B.③④C.②③D.②④
【答案】C
【解析】
根据函数函数的单调性及分段函数的定义,画出函数图象,根据图象即可求得答案.
解:当x>1时,x﹣1>0,f(x)=22﹣x+1﹣3=23﹣x﹣3,单调递减,
当﹣1<x<1时,f(x)=22+x﹣1﹣3=21+x﹣3,单调递增,
∴
在(﹣1,1)单调递增,在(1,+∞)单调递减,
∴当x=1时,取最大值为1,
∴绘出
的图象,如图下方曲线:
①当n=0时,f(x)
,
由函数图象可知:
要使f(x)的值域是[﹣1,1],
则m∈(1,2];故①错误;
②当
时,f(x)
,
f(x)在[﹣1,
]单调递增,f(x)的最大值为1,最小值为﹣1,
∴
;故②正确;
③当
时,m∈[1,2];故③正确,④错误,
故选:C.
![]()
科目:高中数学 来源: 题型:
【题目】下面有五个命题:
①函数
的最小正周期是
;
②终边在
轴上的角的集合是
;
③在同一坐标系中,函数
的图象和函数
的图象有三个公共点;
④把函数
的图象向右平移
个单位得到
的图象;
⑤函数
在
上是减函数;
其中真命题的序号是( )
A.①②⑤B.①④C.③⑤D.②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知F为抛物线C:y2=2px(P>0)的焦点,过F垂直于x轴的直线被C截得的弦的长度为4.
(1)求抛物线C的方程.
(2)过点(m,0),且斜率为1的直线被抛物线C截得的弦为AB,若点F在以AB为直径的圆内,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y2=2px过点P(1,1).过点(0,
)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.
(Ⅰ)求抛物线C的方程,并求其焦点坐标和准线方程;
(Ⅱ)求证:A为线段BM的中点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数
,如果存在实数
(
,且
不同时成立),使得
对
恒成立,则称函数
为“
映像函数”.
(1)判断函数
是否是“
映像函数”,如果是,请求出相应的
的值,若不是,请说明理由;
(2)已知函数
是定义在
上的“
映像函数”,且当
时,
.求函数
(
)的反函数;
(3)在(2)的条件下,试构造一个数列
,使得当
时,
,并求
时,函数
的解析式,及
的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,给出下列四个判断:
(1)
的值域是
;
(2)
的图像是轴对称图形;
(3)
的图像是中心对称图形;
(4)方程
有解.
其中正确的判断有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地政府为了帮助当地农民脱贫致富,开发了一种新型水果类食品,该食品生产成本为每件8元.当天生产当天销售时,销售价为每件12元,当天未卖出的则只能卖给水果罐头厂,每件只能卖5元.每天的销售量与当天的气温有关,根据市场调查,若气温不低于
,则销售5000件;若气温位于
,则销售3500件;若气温低于
,则销售2000件.为制定今年8月份的生产计划,统计了前三年8月份的气温范围数据,得到下面的频数分布表:
气温范围 (单位: |
|
|
|
|
|
天数 | 4 | 14 | 36 | 21 | 15 |
以气温范围位于各区间的频率代替气温范围位于该区间的概率.
(1)求今年8月份这种食品一天销售量(单位:件)的分布列和数学期望值;
(2)设8月份一天销售这种食品的利润为
(单位:元),当8月份这种食品一天生产量
(单位:件)为多少时,
的数学期望值最大,最大值为多少![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆
的左、右顶点分别为A、B,双曲线
以A、B为顶点,焦距为
,点P是
上在第一象限内的动点,直线AP与椭圆相交于另一点Q,线段AQ的中点为M,记直线AP的斜率为![]()
为坐标原点.
![]()
(1)求双曲线
的方程;
(2)求点M的纵坐标
的取值范围;
(3)是否存在定直线
使得直线BP与直线OM关于直线
对称?若存在,求直线
的方程;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com