精英家教网 > 高中数学 > 题目详情
5.函数f(x)=$\frac{sin4x}{1+cos4x}$的最小正周期是$\frac{π}{2}$.

分析 利用三角函数公式化简只有一个函数名,即可求解周期.

解答 解:函数f(x)=$\frac{sin4x}{1+cos4x}$=$\frac{2sin2xcos2x}{1+cos2•2x}=\frac{2sin2xcos2x}{1+2co{s}^{2}2x-1}$=tan2x.
∴最小正周期T=$\frac{π}{2}$.
故答案为$\frac{π}{2}$.

点评 本题主要考查三角函数的化简能力及图象和性质,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.若向量$\overrightarrow a=(3,2)$,$\overrightarrow b=(0,-1)$,则向量$\vec a+\vec b$的坐标是(  )
A.(3,-1)B.(-3,1)C.(-3,-1)D.(3,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数f(x)=x(x-c)2在x=3处有极大值,则c=(  )
A.9B.3C.3或9D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.甲乙两台机床同时生产一种零件,10天中,两台机床每天出的次品数分别是
 甲 0
 乙 2
由此判断性能较好的一台是乙.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,点D满足$\overrightarrow{BC}$=3$\overrightarrow{BD}$,则(  )
A.$\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$B.$\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{AB}$-$\frac{2}{3}$$\overrightarrow{AC}$C.$\overrightarrow{AD}$=$\frac{2}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$D.$\overrightarrow{AD}$=$\frac{2}{3}$$\overrightarrow{AB}$-$\frac{1}{3}$$\overrightarrow{AC}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在四棱锥P-ABCD中,底面ABCD为正方形,PA丄底面ABCD,PA=AC.过点A的平面与棱PB,PC,PD分别交于点E,F,G(E,F,G三点均不在棱的端点处).
(I)求证:平面PAB丄平面PBC
(Ⅱ)若PC丄平面AEFG,求$\frac{PF}{PC}$的值;
(Ⅲ)直线AE是否可能与平面PCD平行?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.运行如图所示的程序框图,若输入的n=3,x=2,则输出的y的值为(  )
A.9B.18C.20D.35

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与(x-2)2+(y-4)2=9相外切,若过点P(-1,1)的直线l与圆C交于A,B两点,当∠ACB最小时,弦AB的长为(  )
A.4B.$2\sqrt{3}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=2x+x-4,g(x)=ex+x-4,h(x)=lnx+x-4的零点分别是a,b,c,则a,b,c的大小顺序是(  )
A.a<b<cB.c<b<aC.b<a<cD.c<a<b

查看答案和解析>>

同步练习册答案