分析 作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最值.
解答 解:作出不等式对应的平面区域,![]()
由z=x+2y,得y=-$\frac{1}{2}x+\frac{z}{2}$,
平移直线y=-$\frac{1}{2}x+\frac{z}{2}$,由图象可知当直线y=-$\frac{1}{2}x+\frac{z}{2}$经过点B(2,2)时,直线y=-$\frac{1}{2}x+\frac{z}{2}$的截距最大,此时z最大.
此时z的最大值为z=2+2×2=6,
过点C(2,0)时,直线y=2的截距最小,此时z最小.
此时z的最小值为z=2+2×2=6,
故x+2y的取值范围是[2,6]
故答案为:[2,6].
点评 本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 11 | B. | 13 | C. | 15 | D. | 17 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | M∩N | B. | M∪N | C. | ∁R(M∩N) | D. | ∁R(M∪N) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{9}$ | B. | $\frac{1}{4}$ | C. | $\frac{5}{12}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
满意度 品牌 | 满意 | 不满意 |
| A | 80% | 20% |
| B | 60% | 40% |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com