分析 由题意可得函数单调递增,结合图象可得$\left\{\begin{array}{l}{x=-\frac{-a}{2×1}≤2}\\{{2}^{2}-2a+3a≥0}\end{array}\right.$,解关于a的不等式组可得.
解答 解:∵函数f(x)=$\sqrt{{x^2}-ax+3a}$,对于任意x≥2,当△x>0时,恒有f(x+△x)>f(x),
∴函数f(x)=$\sqrt{{x^2}-ax+3a}$在x≥2时单调递增,
∴$\left\{\begin{array}{l}{x=-\frac{-a}{2×1}≤2}\\{{2}^{2}-2a+3a≥0}\end{array}\right.$,解得-4≤a≤4
故答案为:[-4,4]
点评 本题考查函数的单调性和恒成立问题,转化为二次函数的单调性是解决问题的关键,属中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 4.5 | C. | 4.75 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{9}{10}$ | B. | $\frac{11}{10}$ | C. | $\frac{10}{9}$ | D. | $\frac{10}{11}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com