精英家教网 > 高中数学 > 题目详情
5.滨湖区拟建一主题游戏园,该游戏园为四边形区域ABCD,其中三角形区城ABC为主题活动区,其中∠ACB=60°,∠ABC=45°,AB=12$\sqrt{6}$m;AD、CD为游客通道(不考虑宽度),且∠ADC=120°,通道AD、CD围成三角形区域ADC为游客休闲中心,供游客休憩.
(1)求AC的长度;
(2)记游客通道AD与CD的长度和为L,求L的最大值.

分析 (1)利用正弦定理,求AC的长度.
(2)求出AD,CD,可得出L关于θ的关系式,化简后求L的最大值.

解答 解:(1)由已知由正弦定理,得$\frac{AB}{sin∠ACB}=\frac{AC}{sin∠B}$,又∠ACB=60°,∠ABC=45°,AB=12$\sqrt{6}$cm,所以AC=$\frac{12\sqrt{6}sin45°}{sin60°}$=24m.
(2)因为∠ADC=120°∠CAD=θ,∠ACD=60°-θ,
在△ADC中,由正弦定理得到$\frac{AC}{sin120°}=\frac{CD}{sinθ}=\frac{AD}{sin(60°-θ)}$,
所以L=CD+AD=16$\sqrt{3}$[sin(60°-θ)+sinθ]=16$\sqrt{3}$[sin60°cosθ-cos60°sinθ+sinθ]=16$\sqrt{3}$sin(60°+θ),
因0°<θ<60°,当θ=30°时,L取到最大值 16$\sqrt{3}$m.

点评 本题考查正弦定理,考查三角函数的化简,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=$\sqrt{{x^2}-ax+3a}$,对于任意x≥2,当△x>0时,恒有f(x+△x)>f(x),则实数a的取值范围是[-4,4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an},a1=20,an=an+1+2,求:
(1)a5的值;
(2)数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在平面直角坐标系中,O为坐标原点,过点P(1,1)作直线L与圆x2+y2=9分别相交于A、B两点,则当|AB|从最短到最长(逆时针方向旋转)变化的过程中,直线L的斜率的取值范围是[-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知f(x)=x2-px+q,集合A={x|f(x)=x}={2},求f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知离散型随机变量ξ的概率分布为
 ξ 0 1 2 3
 P 0.12 0.24 0.12
则P(ξ=2)=0.52.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知数轴上两点A,B的坐标分别是-8,-3,则$\overrightarrow{AB}$的坐标为5,|$\overrightarrow{AB}$|=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知P(x,y)是中心在原点,焦距为4$\sqrt{2}$的双曲线上一点,且$\frac{y}{x}$的取值范围为(-1,1),则该双曲线的方程是(  )
A.x2-y2=8B.y2-x2=8C.x2-y2=4D.y2-x2=4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知定义域为(1,+∞)的函数f(x)的导函数为f′(x),且f(e)=2,$\frac{f(x)}{x}$=lnx•f′(x),则不等式xf(x)<2e的解集为(1,e).

查看答案和解析>>

同步练习册答案