精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=lnx-3x,则曲线y=f(x)在点(1,f(1))处的切线与坐标轴围成的三角形的面积为(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{1}{8}$

分析 求出函数的导数,计算f(1),f′(1)的值,求出切线方程,从而求出三角形的面积即可.

解答 解:f′(x)=$\frac{1}{x}$-3,
故f(1)=-3,f′(1)=-2,
故切线方程是:y+3=-2(x-1),
即2x+y+1=0,
令x=0,解得:y=-1,
令y=0,解得:x=-$\frac{1}{2}$,
故三角形的面积S=$\frac{1}{2}$×1×$\frac{1}{2}$=$\frac{1}{4}$,
故选:C.

点评 本题考查了求三角形的面积,考查导数的应用以及切线方程问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2|x+1|+|2x-a|(x∈R).
(1)当a>-2时,函数f(x)的最小值为4,求实数a的值;
(2)若对于任意,x∈[-1,4],不等式f(x)≥3x恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.点(3,4)不在不等式y≤3x+b表示的区域内,而点(4,4)在此区域内,则实数b的取值范围是[-8,-5).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.濮阳市黄河滩区某村2010年至2016年人均纯收入(单位:万元)的数据如下表:
年份 20102011 2012 2013 2014 2015 2016 
年份代号x 1 2 4 6
人均纯收入y2.9 3.3 3.6 4.4 4.8 5.2 5.9 
(Ⅰ)求y关于x的线性回归方程;
(Ⅱ)利用(Ⅰ)中的回归方程,分析2010年至2016年该村人均纯收入的变化情况,并预测该村2017年人均纯收入.
附:回归直线的斜率和截距的最小乘法估计公式分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{t}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{sinx}{x}$.
(Ⅰ)求曲线y=f(x)在点A(π,f(π))处的切线方程;
(Ⅱ)证明:若x∈(0,π),则f'(x)<0;
(Ⅲ)若0<α<$\frac{π}{2}$<β<2π,判定f(α)与f(β)的大小关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设A、B分别是复数z1、z2,在复平面上对应的两点,O为原点,若|z1+z2|=|z1-z2|,则∠AOB的大小为90°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.某单位植树节计划种杨树x棵,柳树y棵,若实数x,y满足约束条件$\left\{\begin{array}{l}{2x-y>5}\\{x-y<2}\\{x<7}\end{array}\right.$,则该单位集合栽种这两种树的棵树最多为12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.读下面的流程图,若输入的值为-5时,输出的结果是(  )
A.-10B.-6C.2D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.命题:①半径为2,圆心角的弧度数为$\frac{1}{2}$的扇形的周长为5;
②若α、β为第三象限角,且α>β,则cosα>cosβ;
③若直线的斜率是-cosθ,则其倾斜角的取值范围是[$\frac{π}{4},\frac{π}{2}})∪({\frac{π}{2},\frac{3π}{4}}$];
④当x≠$\frac{kπ}{2}$(k∈Z))时,$\frac{sinx+tanx}{cosx+cotx}$的值恒正.其中正确的命题是①④.

查看答案和解析>>

同步练习册答案