精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=ax3+bx+1,且f(-2)=3,则f(2)=-1.

分析 利用函数的奇偶性的性质,化简求解即可.

解答 解:函数f(x)=ax3+bx+1,且f(-2)=3,
则f(2)=8a+2b+1=-(-8a-2b+1)+2
=-3+2=-1
故答案为:-1.

点评 本题考查函数的奇偶性的性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=($\frac{1}{2}}$)|x-1|+m,若函数f(x)有5个零点,则实数m的取值范围是$({-1,-\frac{1}{2}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若f′(x)=3,则$\lim_{△x→0}\frac{f(x+△x)-f(x)}{△x}$等于(  )
A.3B.$\frac{1}{3}$C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.定义域和值域均为[-4,4]的函数y=f(x)和y=g(x)的图象如图所示,下列命题的是(  )
A.方程f[g(x)]=0有且仅有三个根B.方程g[f(x)]=0有且仅有三个根
C.方程f[f(x)]=0有且仅有两个根D.方程g[g(x)]=0有且仅有两个根

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知数列{an}是公差为d的等差数列,a2=2,a1•a2•a3=6,则d=(  )
A.lB.-lC.±lD.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在平面直角坐标系xOy中,已知圆x2+y2=4上有且仅有四个点到直线4x-3y+c=0的距离为1,则实数c的取值范围是(-5,5).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数y=$\frac{{\sqrt{x+4}}}{|x|-5}$的定义域是{x|x≥-4且x≠5}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.(理)从P出发的三条射线PA,PB,PC每两条夹角成60°,则二面角B-PA-C的余弦值为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设a>0,b>0,则以下不等式中恒成立的是(  )
A.$(a+b)(\frac{1}{a}+\frac{1}{b})≥4$B.a3+b3≥2abC.a2+b2≥2a+2bD.$\sqrt{|{a-b}|}$≤$|\sqrt{a}-\sqrt{b}|$

查看答案和解析>>

同步练习册答案