精英家教网 > 高中数学 > 题目详情
已知f(x)是定义在R上的偶函数,并且f(x+2)=-
1
f(x)
,当2≤x≤3时,f(x)=x,则f(
3
2
)
=
 
?.
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:由f(x+2)=-
1
f(x)
求出函数的周期是4,再结合偶函数的性质,把f(
3
2
)转化为f(
5
2
),代入所给的解析式进行求解.
解答: 解:∵f(x+2)=-
1
f(x)
,∴f(x+4)=-
1
f(x+2)
=f(x),则函数是周期为4的周期函数,
∵f(x)是定义在R上的偶函数,
∴f(
3
2
)=f(-
3
2
)=f(4-
3
2
)=f(
5
2
),
∵当2≤x≤3时,f(x)=x,∴f(
5
2
)=
5
2

故答案为:
5
2
点评:本题考查了函数周期性和奇偶性的应用,即根据周期函数的性质和奇偶性对应的关系式,将所求的函数值进行转化,转化到已知范围内求解,考查了转化思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若A(3,-2),B(-9,4),C(x,0)三点共线,则x=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在钝角△ABC中,a=1,b=2,则最大边c的取值范围是(  )
A、1<c<3
B、2<c<3
C、
5
<c<3
D、2
2
<c<3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax+a-x(a>0且a≠1).
(1)当x∈[1,2]时,函数f(x)的最大值为
5
2
,求此时a的值;
(2)当x∈[-2,1]时,函数f(x)的最大值为
5
2
,求此时a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在(1+x2)(1-2x)6的展开式中,x5的系数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的焦距为2
5
,过M(1,1)斜率为
2
3
直线l交曲线C于A,B且M是线段AB的中点,则双曲线C的标准方程为(  )
A、
x2
3
-
y2
2
=1
B、
x2
3
-
3y2
2
=1
C、
x2
3
-2y2=1
D、
x2
3
-y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:

求证:sin(π-α)(1+tanα)+sin(
π
2
+α)(1+
1
tanα
)=
1
sinα
+
1
cosα

查看答案和解析>>

科目:高中数学 来源: 题型:

已知M={x|-2<x<5},N={x|a+1≤x≤2a-1}
(Ⅰ)是否存在实数a使得M∩N=M,若不存在,请说明理由,若存在,求实数a的取值范围;
(Ⅱ)是否存在实数a使得M∪N=M,若不存在,请说明理由,若存在,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={5,6,7},N={5,7,8},则(  )
A、M⊆N
B、M?N
C、M∩N={5,7}
D、M∪N={6,7,8}

查看答案和解析>>

同步练习册答案