精英家教网 > 高中数学 > 题目详情
20.已知△ABC的面积满足$\sqrt{3}$≤S≤3,且$\overrightarrow{AB}•\overrightarrow{BC}$=6.
(1)求∠B的取值范围;
(2)求函数f(B)=sin2B+2sinBcosB+3cos2B的最小值.

分析 (1)由△ABC的面积公式和平面向量的数量积公式,得出S=-3tanB,
结合正切函数的单调性及B为三角形内角,求出B的取值范围;
(2)化简函数f(B),根据B的取值范围即可求出f(x)的最小值.

解答 解:(1)$\overrightarrow{AB}$•$\overrightarrow{BC}$=|$\overrightarrow{AB}$|×|$\overrightarrow{BC}$|cos(π-B)=6①
S=$\frac{1}{2}$×|$\overrightarrow{AB}$|×|$\overrightarrow{BC}$|sinB②;
由①、②得,S=-3tanB.
由$\frac{\sqrt{3}}{3}$≤-tanB≤$\sqrt{3}$可得,
又0<B<π,
所以B∈[$\frac{2π}{3}$,$\frac{5π}{6}$];
(2)f(B)=sin2B+2sinBcosB+3cos2B
=1+sin2B+2cos2B
=1+sin2B+2×$\frac{1+cos2B}{2}$
=sin2B+cos2B+2
=$\sqrt{2}$sin(2B+$\frac{π}{4}$)+2
B∈[$\frac{2π}{3}$$\frac{5π}{6}$]2B+$\frac{π}{4}$∈[$\frac{19π}{12}$$\frac{23π}{12}$]
f(B)=sin(2B+$\frac{π}{4}$)是单调增函数,
∴f(B)的最小值$\sqrt{2}$sin(2×$\frac{2π}{3}$+$\frac{π}{4}$)=$\frac{3}{2}$-$\frac{\sqrt{3}}{2}$.

点评 本题考查了三角形的面积公式与平面向量数量积公式的应用问题,也考查了三角函数的化简与求最值问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知p:-x2+4x+32≥0,q:x2-2x+1-m2≤0(m>0).
(1)若p是q的充分不必要条件,求实数m的取值范围.
(2)若“¬p”是“¬q”的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某三棱锥的三视图如图,该三棱锥的体积是(  )
A.2B.$\frac{2}{3}$C.$\frac{4}{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(x)=x${\;}^{2}+ax+sin(\frac{π}{2}x)$,x∈(0,1).
(1)若f(x)在(0,1)上是单调递增函数,求a的取值范围;
(2)当a=-2时,f(x)≥f(x0)恒成立,且f(x1)=f(x2)(x1≠x2),求证:x1+x2>2x0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知P(1,1)为椭圆$\frac{x^2}{2}+\frac{y^2}{4}=1$内一定点,经过P引一弦,使此弦在P(1,1)点被平分,则此弦所在的直线方程是2x+y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.等差数列{an}中,a3=5,a5=3,则该数列的前10项的S10等于(  )
A.24B.25C.27D.28

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\frac{1}{3}$x3+x2+ax和函数g(x)=e-x,若对任意x1∈[$\frac{1}{2}$,2],存在x2∈[$\frac{1}{2}$,2],使f′(x1)≤g(x2)成立,则实数a的取值范围是(  )
A.(-∞,$\frac{\sqrt{e}}{e}$-8]B.[$\frac{\sqrt{e}}{e}$-8,+∞)C.[$\sqrt{2}$,e)D.(-$\frac{\sqrt{3}}{3}$,$\frac{e}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=px+$\frac{q}{x}$(实数p、q为常数),且满足f(1)=$\frac{5}{2}$,f(2)=$\frac{17}{4}$.
(1)求函数f(x)的解析式;
(2)试判断函数f(x)在区间(0,$\frac{1}{2}}$]上的单调性,并用函数单调性定义证明;
(3)当x∈(0,$\frac{1}{2}}$]时,函数f(x)≥2-m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知sinα=$\frac{3}{5}$,α∈(${\frac{π}{2}$,π),cosβ=$\frac{5}{13}$且β是第一象限角,求sin(α+β),cos(α-β)的值.

查看答案和解析>>

同步练习册答案