精英家教网 > 高中数学 > 题目详情
工厂的设备使用一段时间后,需要更新,但若更新过早,老设备的生产潜力未得以完全发挥就抛弃,易造成损失;若更新过晚,老设备生产效率低下,维修费用昂贵,也会造成损失,现有一台价值4000元的设备,第一年的维修、燃料及动力消耗费用为320元,以后每一年比上一年增加320元,要使工厂为这台设备支付的年平均费用最小,这台设备应在使用多少年后更新?
考点:根据实际问题选择函数类型
专题:应用题,等差数列与等比数列
分析:设这台设备使用x年后要更新,这这x年的平均费用为
4000+
320x(x+1)
2
x
=
4000
x
+160x+160,利用基本不等式求得它的最小值,以及此时x的值.
解答: 解:设这台设备使用x年后要更新,这这x年的总费用为4000+320(1+2+3+…+x)=4000+
320x(x+1)
2

平均费用为
4000+
320x(x+1)
2
x
=
4000
x
+160x+160≥800+160=960,
当且仅当
4000
x
=160x,即 x=5时,取等号.
故使用5年更新,每年的平均费用最低.
点评:本题主要考查基本不等式在最值问题中的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ex
(Ⅰ)设函数g(x)=
a
f(x)
+x
,a∈R,求g(x)的极值.
(Ⅱ)证明:h(x)=f(x)-
1
2
x2-x-1
在R上为增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-alnx.
(1)若a=2e,求f(x)的单调区间和极值;
(2)若f(x)在(0,e)上有两个不同的零点,求实数a的取值范围.(其中e是自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
x+1

(Ⅰ)设g(x)=f(x)•1nx,判断函数g(x)在(0,+∞)上是否存在极大值,并说明理由.
(Ⅱ)如图,曲线y=f(x)在点Q(0,1)处的切线与x轴交于点P1,过点P1作x轴的垂线交曲线于点Q1;曲线在点Q1处的切线与x轴交于点P2,过点P2作x轴的垂线交曲线于点Q2;依次重复上述过程得到点列:P1,P2,P3,…,Pn(n∈N*),设点Pn的坐标为(an,0),求数列{an}的通项公式,并证明:
1
a1
+
1
a2
+…+
1
an
3
2
-
1
2n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(ax2+x)•ex,其中e是自然数的底数,a∈R,
(1)当a<0时,解不等式f(x)>0;
(2)当a=0时,试判断:是否存在整数k,使得方程f(x)=(x+1)•ex+x-2在[k,k+1]上有解?若存在,请写出所有可能的k的值;若不存在,说明理由;
(3)若当x∈[-1,1]时,不等式f(x)+(2ax+1)•ex≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
8
x2+lnx+2,g(x)=x.
(Ⅰ)求函数F(x)=f(x)-2•g(x)的极值点;
(Ⅱ)若函数F(x)=f(x)-2•g(x)在[et,+∞)(t∈Z)上有零点,求t的最大值;
(Ⅲ)若bn=g(n)
1
g(n+1)
(n∈N*),试问数列{bn}中是否存在bn=bm(m≠n)?若存在,求出所有相等的两项;若不存在,请说明理由.(e为自然对数的底数约为2.718).

查看答案和解析>>

科目:高中数学 来源: 题型:

欲修建一横断面为等腰梯形(如图)的水渠,为降低成本必须尽量减少水与渠壁的接触面,若水渠横断面面积设计为定值S,渠深h,则水渠壁的倾角α(0°<α<90°)应为多大时,方能使修建成本最低?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-5x+4=0},B={x|(x-3)(x-a)=0,a∈R}.
(1)若a=1,求A∩B、A∪B;
(2)若A∩B≠∅,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
x2-4x+8
x-2
的极大值点与极小值点分别是
 

查看答案和解析>>

同步练习册答案