精英家教网 > 高中数学 > 题目详情

某糖厂为了了解一条自动生产线上袋装白糖的重量,随机抽取了100袋,并称出每袋白糖的重量(单位:g),得到如下频率分布表。

分组
频数
频率
[485.5,490.5)
10

[490.5,495.5)


[495.5,500.5)


[500.5,505.5]
10
 
合计
100
 
表中数据成等差数列。
(I)将有关数据分别填入所给的频率。分布表的所有空格内,并画出频率分布直方图。
(II)在这100包白糖的重量中,估计其中位数。

(1)

分组
频数
频率
[485.5,490.5)
10
0.1
[490.5,495.5)
30
0.3
[495.5,500.5)
50
0.5
[500.5,505.5]
10
0.1
合计
100
1

(2)这100包白糖重量的中位数为496.5g

解析试题分析:(1)根据题意,频率等于频数除以样本容量,那么可知随机抽取了100袋,以每5克为一个组来分为4组来得到频率值0.1,0.3,0.5,0.1,进而得到表格。

分组
频数
频率
[485.5,490.5)
10
0.1
[490.5,495.5)
30
0.3
[495.5,500.5)
50
0.5
[500.5,505.5]
10
0.1
合计
100
1

(2)由频率分布直方图知中位数应在第三组设中位数为
     
这100包白糖重量的中位数为496.5g
考点:直方图和频率分布表
点评:主要是考查了频率分布表和直方图的运用,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某校高三4班有50名学生进行了一场投篮测试,其中男生30人,女生20人.为了了解其投篮成绩,甲、乙两人分别都对全班的学生进行编号(1~50号),并以不同的方法进行数据抽样,其中一人用的是系统抽样,另一人用的是分层抽样.若此次投篮考试的成绩大于或等于80分视为优秀,小于80分视为不优秀,以下是甲、乙两人分别抽取的样本数据:

编号
性别
投篮成绩
2

90
7

60
12

75
17

80
22

83
27

85
32

75
37

80
42

70
47

60
甲抽取的样本数据
编号
性别
投篮成绩
1

95
8

85
10

85
20

70
23

70
28

80
33

60
35

65
43

70
48

60
乙抽取的样本数据
(Ⅰ)观察抽取的样本数据,若从男同学中抽取两名,求两名男同学中恰有一名非优秀的概率.
(Ⅱ)请你根据抽取的样本数据完成下列2×2列联表,判断是否有95%以上的把握认为投篮成绩和性别有关?
 
优秀
非优秀
合计

 
 
 

 
 
 
合计
 
 
10
(Ⅲ)判断甲、乙各用何种抽样方法,并根据(Ⅱ)的结论判断哪种抽样方法更优?说明理由.
下面的临界值表供参考:

0.15
0.10
0.05
0.010
0.005
0.001

2.072
2.706
3.841
6.635
7.879
10.828
(参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7名身高互不相等的学生,分别按下列要求排列,各有多少种不同的排法?
(1)7人站成一排,要求最高的站在中间,并向左、右两边看,身高逐个递减;
(2)任取6名学生,排成二排三列,使每一列的前排学生比后排学生矮.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:

单价x(元)
8
8.2
8.4
8.6
8.8
9
销量y (件 )
90
84
83
80
75
68
(I)求销量与单价间的回归直线方程;
(II)预计在今后的销售中,销量与单价仍然服从(I)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某种产品的广告费支出与销售额(单位:百万元)之间有如下对应数据:

x
2
4
5
6
8
y
30
40
60
50
70
其中
(1)画出散点图;
(2)求回归直线方程;
(3)试预测广告支出为10百万元时,销售额多大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某中学共2200名学生中有男生1200名,按男女性别用分层抽样抽出110名学生,询问是否爱好某项运动。已知男生中有40名爱好该项运动,女生中有30名不爱好该项运动。
(1)如下的列联表:

 
 
 男
 

 
总计
 
爱好
 
40
 
 
 
 
 
不爱好
 
 
 
30
 
 
 
总计
 
 
 
 
 
 
 
(2)通过计算说明,是否有99%以上的把握认为“爱好该项运动与性别有关”? 参考信息如下:

 
0.050
 
0.010
 
0.001
 
k
 
3.841
 
6.635
 
10.828
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在对人们的休闲方式的一次调查中,共调查了人,其中女性人,男性人.女性中有人主要的休闲方式是看电视,另外人主要的休闲方式是运动;男性中有人主要的休闲方式是看电视,另外人主要的休闲方式是运动.
(1)根据以上数据建立一个的列联表;
(2)判断性别与休闲方式是否有关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(理科)(本小题满分12分)PM2.5是指悬浮在空气中的空气动力学当量直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,根据现行国家标准GB3095 – 2012,PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米 ~ 75毫克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标。从某自然保护区2012年全年每天的PM2.5监测值数据中随机地抽取10天的数据作为样本,监测值频数如下表所示:

PM2.5日均值
(微克/立方米)
[25,35]
(35,45]
(45,55]
(55,65]
(65,75]
(75,85]
频数
3
1
1
1
1
3
(1)从这10天的PM2.5日均值监测数据中,随机抽取3天,求恰有1天空气质量达到一级的概率;(2)从这10天的数据中任取3天数据,记ξ表示抽到PM2.5监测数据超标的天数,求ξ的分布列;(3)以这10天的PM2.5日均值来估计一年的空气质量状况,则一年(按366天算)中平均有多少天的空气质量达到一级或二级。(精确到整数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某学校课题组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(满分100分)如下表所示:

序号
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
数学成绩
95
75
80
94
92
65
67
84
98
71
67
93
64
78
77
90
57
83
72
83
物理成绩
90
63
72
87
91
71
58
82
93
81
77
82
48
85
69
91
61
84
78
86
若单科成绩85分以上(含85分),则该科成绩为优秀.
(1)根据上表完成下面的2×2列联表(单位:人):
 
数学成绩优秀
数学成绩不优秀
 合  计
物理成绩优秀
 
 
 
物理成绩不优秀
 
 
 
合  计
 
 
20
(2)根据题(1)中表格的数据计算,有多大的把握,认为学生的数学成绩与物理成绩之间有关系?
参考数据:
假设有两个分类变量,它们的值域分别为,其样本频数列联表(称为列联表)为:
 


合计








合计



则随机变量,其中为样本容量;
②独立检验随机变量的临界值参考表:

0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001

0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828
 

查看答案和解析>>

同步练习册答案