精英家教网 > 高中数学 > 题目详情

某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:

单价x(元)
8
8.2
8.4
8.6
8.8
9
销量y (件 )
90
84
83
80
75
68
(I)求销量与单价间的回归直线方程;
(II)预计在今后的销售中,销量与单价仍然服从(I)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?

(1)
(2)当单价定为8.25元时,工厂可获得最大利润

解析试题分析:解:(1)设,则有如下数据:

m
-5
-3
-1
1
3
5
n
11
5
4
1
-4
-11
用最小二乘法求的回归方程:
     

        
∴m、n的回归方程为
代入回归方程得
,即

(2)设工厂获得的利L元,可得

当且仅当x=8.25,L去取得最大值
故当单价定为8.25元时,工厂可获得最大利润。
考点:线性回归方程
点评:主要是考查了线性回归方程的运用,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

南昌市为增强市民的交通安全意识,面向全市征召“小红帽”志愿者在部分交通路口协助交警维持交通,把符合条件的1000名志愿者按年龄分组:第1组、第2组、第3组、第4组、第5组,得到的频率分布直方图如图所示:

(1)若从第3、4、5组中用分层抽样的方法抽取12名志愿者在五一节这天到广场协助交警维持交通,应从第3、4、5组各抽取多少名志愿者?
(2)在(1)的条件下,南昌市决定在这12名志愿者中在第四或第五组的志愿者中,随机抽取3名志愿者到学校宣讲交通安全知识,求到学校宣讲交通知识的资源者中恰好1名市第五组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分为5组:分别加以统计,得到如图所示的频率分布直方图.
(I)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;
(II)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?


0.100
0.050
0.010
0.001
k
2.706
3.841
6.635
10.828
 

25周岁以上组                          25周岁以下组

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对400个某种型号的电子元件进行寿命追踪调查,其频率分布表如下表:

寿命(h)
频率
500600
0.10
600700
0.15
700800
0.40
800900
0.20
9001000
0.15
合计
1

(I)在下图中补齐频率分布直方图;
(II)估计元件寿命在500800h以内的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:

零件的个数x(个)
2
3
4
5
加工的时间y(小时)
2.5
3
4
4.5
(1)回归分析,并求出y关于x的线性回归方程=bx+a;
(2)试预测加工10个零件需要多少时间?

n-2
1
2
3
4
小概率0.05
0.997
0.950
0.878
0.811
小概率0.01
1.000
0.990
0.959
0.917

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为考查某种药物预防疾病的效果,进行动物试验,得到如下丢失数据的列联表:
药物效果试验列联表

 
患病
未患病
总计
没服用药
20
30
50
服用药
x
y
50
总计
M
N
100
设从没服用药的动物中任取两只,未患病数为X;从服用药物的动物中任取两只,未患病数为Y,工作人员曾计算过P(X=0)= P(Y=0).
(1)求出列联表中数据x,y,M,N的值;
(2)能够有多大的把握认为药物有效?
(3)现在从该100头动物中,采用随机抽样方法每次抽取1头,抽后返回,抽取5次, 若每次抽取的结果是相互独立的,记被抽取的5头中为服了药还患病的数量为.,求的期望E()和方差D().
参考公式:(其中
P(K2≥k)
0.25
0.15
0.10
0.05
0.010
0.005
k
1.323
2.072
2.706
3.845
6.635
7.879

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某糖厂为了了解一条自动生产线上袋装白糖的重量,随机抽取了100袋,并称出每袋白糖的重量(单位:g),得到如下频率分布表。

分组
频数
频率
[485.5,490.5)
10

[490.5,495.5)


[495.5,500.5)


[500.5,505.5]
10
 
合计
100
 
表中数据成等差数列。
(I)将有关数据分别填入所给的频率。分布表的所有空格内,并画出频率分布直方图。
(II)在这100包白糖的重量中,估计其中位数。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机的对入院50人进行了问卷调查得到了如下的列联表:

 
患心肺疾病
不患心肺疾病
合计

 
5
 

10
 
 
合计
 
 
50
已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为
(Ⅰ)请将上面的列联表补充完整;
(Ⅱ)是否有的把握认为患心肺疾病与性别有关?说明你的理由;
(Ⅲ)已知在患心肺疾病的10位女性中,有3位又患胃病.现在从患心肺疾病的10位女性中,选出3名进行其他方面的排查,记选出患胃病的女性人数为,求的分布列,数学期望以及方差.
下面的临界值表供参考: 

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
(参考公式 其中

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2012年3月2日,国家环保部发布了新修订的《环境空气质量标准》.其中规定:居民区中的PM2.5(PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称可入肺颗粒物)年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米. 某城市环保部门随机抽取了一居民区去年40天的PM2.5的24小时平均浓度的监测数据,数据统计如下:

组别
PM2.5(微克/立方米)
频数(天)
频率
第一组
(0,15]
4
0.1
第二组
(15,30]
12
0.3
第三组
(30,45]
8
0.2
第四组
(45,60]
8
0.2
第三组
(60,75]
4
0.1
第四组
(75,90)
4
0.1
(Ⅰ)写出该样本的众数和中位数(不必写出计算过程);
(Ⅱ)求该样本的平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由;
(Ⅲ)将频率视为概率,对于去年的某2天,记这2天中该居民区PM2.5的24小时平均浓度符合环境空气质量标准的天数为,求的分布列及数学期望

查看答案和解析>>

同步练习册答案