精英家教网 > 高中数学 > 题目详情
解不等式:2x2-5x+3<0.
考点:一元二次不等式的解法
专题:不等式的解法及应用
分析:把不等式2x2-5x+3<0化为(2x-3)(x-1)<0,从而求得不等式的解集.
解答: 解:∵不等式2x2-5x+3<0可化为
(2x-3)(x-1)<0,
解得,1<x<
3
2

∴原不等式的解集为{x|1<x<
3
2
}.
点评:本题考查了一元二次不等式的解法与应用问题,解题时应按照解一元二次不等式的基本步骤解答,即可得出正确的答案,是容易题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

以双曲线
x2
3
-y2=1的右焦点为焦点,顶点在原点的抛物线标准方程是(  )
A、y2=4x
B、y2=-4x
C、y2=8x
D、y2=-8x

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD为矩形,BC⊥平面ABE.平面BCE⊥平面ACE,AE=EB=BC=2
(Ⅰ)求证:AE⊥BE;
(Ⅱ)求二面角A-CD-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是以公比为q的等比数列,Sn(n∈N*)是其前n项和,且S3,S9,S6成等差数列.
(1)求证:a2,a8,a5也成等差数列;
(2)判断以a2,a8,a5为前三项的等差数列的第四项是否也是数列{an}中的项?若是,求出这一项;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b,c为实数,函数f(x)=x3-ax2-bx+c为R上的奇函数,且在区间[1,+∞)上单调.
(1)求a,b,c应满足的条件;
(2)求函数f(x)的单调区间;
(3)设x0≥1,f(x0)≥1,且f[f(x0)]=x0,求证:f(x0)=x0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα=-
4
5
,α∈(
π
2
2
).
(1)求tanα的值; 
(2)求cos(
α
2
+
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项和为Sn,已知a1=1,Sn+1=4an+2(n∈N*
(Ⅰ)设bn=an+1-2an,求证数列{bn}是等比数列;
(Ⅱ)设cn=
an
2n
,求证数列{cn}是等差数列;
(Ⅲ)求数列{an}的通项公式和前n项和公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列an的首项a1=2,且an=2an-1-1(n?N+,n≥2).
(1)求数列{an}的通项公式;
(2)求数列{nan-n}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=klnx,g(x)=ex
(1)若函数φ(x)=f(x)+x-
2
x
,求φ(x)的单调区间;
(2)设直线l为函数f(x)的图象上一点A(x0,f(x0))处的切线.若在区间(2,+∞)上存在唯一的x0,使得直线l与曲线y=g(x)相切,求实数k的取值范围.

查看答案和解析>>

同步练习册答案