精英家教网 > 高中数学 > 题目详情
(14分)(2011•陕西)设f(x)=lnx,g(x)=f(x)+f′(x).
(Ⅰ)求g(x)的单调区间和最小值;
(Ⅱ)讨论g(x)与的大小关系;
(Ⅲ)求a的取值范围,使得g(a)﹣g(x)<对任意x>0成立.
(Ⅰ)(0,1)是g(x)的单调减区间;(1,+∞)是g(x)的单调递增区间
(Ⅱ)
(Ⅲ)0<a<e

试题分析:(I)求导,并判断导数的符号确定函数的单调区间和极值、最值,即可求得结果;
(Ⅱ)通过函数的导数,利用函数的单调性,半径两个函数的大小关系即可.
(Ⅲ)利用(Ⅰ)的结论,转化不等式,求解即可.
解:(Ⅰ)由题设知f(x)=lnx,g(x)=lnx+
∴g'(x)=,令g′(x)=0得x=1,
当x∈(0,1)时,g′(x)<0,故(0,1)是g(x)的单调减区间.
当x∈(1,+∞)时,g′(x)>0,故(1,+∞)是g(x)的单调递增区间,
因此,x=1是g(x)的唯一值点,且为极小值点,
从而是最小值点,所以最小值为g(1)=1.
(II)
,则h'(x)=﹣
当x=1时,h(1)=0,即
当x∈(0,1)∪(1,+∞)时,h′(1)=0,
因此,h(x)在(0,+∞)内单调递减,
当0<x<1时,h(x)>h(1)=0,即
当x>1时,h(x)<h(1)=0,即
(III)由(I)知g(x)的最小值为1,
所以,g(a)﹣g(x)<,对任意x>0,成立?g(a)﹣1<
即Ina<1,从而得0<a<e.
点评:此题是个难题.主要考查导数等基础知识,考查推理论证能力和、运算求解能力,考查函数与方程思想,数形结合思想,化归和转化思想,分类与整合思想.其考查了同学们观察、推理以及创造性地分析问题、解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知函数,则=    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知曲线 y = x3 + x-2 在点 P0 处的切线  平行直线
4x-y-1=0,且点 P0 在第三象限,
求P0的坐标; ⑵若直线  , 且 l 也过切点P0 ,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数处取得极值.
(1)求的值;(2)求的单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数在区间内单调,则的最大值为__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数)是定义在(一,0)上的可导函数,其导函数为,且有,则不等式的解集为-------------

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求函数的最大值;
(2)若的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知,过可作曲线的三条切线,则的取值范围是     

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,若,则(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案