精英家教网 > 高中数学 > 题目详情
4.已知F是双曲线C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点,O是双曲线C的中心,直线y=$\sqrt{m}$x是双曲线C的一条渐近线,以线段OF为边作正三角形AOF,若点A在双曲线C上,则m的值为(  )
A.3+2$\sqrt{3}$B.3-2$\sqrt{3}$C.3+$\sqrt{3}$D.3-$\sqrt{3}$

分析 根据正三角形的性质,结合双曲线的性质求出,m=$\frac{{b}^{2}}{{a}^{2}}$,A($\frac{1}{2}$c,$\frac{\sqrt{3}}{2}$c),将A点的坐标代入双曲线方程可得到关于m的方程,进行求解即可.

解答 解:∵F(c,0)是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点,直线y=$\sqrt{m}x$是双曲线C的一条渐近线,
又双曲线C的一条渐近线为y=$\frac{b}{a}$x,
∴m=$\frac{{b}^{2}}{{a}^{2}}$,
又点A在双曲线C上,△AOF为正三角形,
∴A($\frac{1}{2}$c,$\frac{\sqrt{3}}{2}$c),
∴$\frac{{(\frac{1}{2}c)}^{2}}{{a}^{2}}$-$\frac{{(\frac{\sqrt{3}}{2}c)}^{2}}{{b}^{2}}$=1,又c2=a2+b2
∴$\frac{{a}^{2}{+b}^{2}}{{4a}^{2}}$-$\frac{{3(a}^{2}{+b}^{2})}{{4b}^{2}}$=1,
即$\frac{1}{4}$+$\frac{1}{4}$m-$\frac{3}{4}$-$\frac{3}{4m}$=1,
∴m2-6m-3=0,又m>0,
∴m=3+2$\sqrt{3}$.
故选:A.

点评 本题考查双曲线的简单性质,考查其渐近线方程,根据正三角形的性质结合渐近线的性质,求出m以及A的坐标是解决本题的关键.,考查学生的运算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.求函数f(x)=-x(x-2)2的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=λ1($\frac{a}{3}{x}^{3}$+$\frac{b-1}{2}$x2+x)+λ2x•3x,(a,b∈R且a>0).
(1)当λ1=1,λ2=0时,若已知x1,x2是函数f(x)的两个极值点,且满足:x1<1<x2<2,求证:f′(-1)>3;
(2)当λ1=0,λ2=1时,
①求实数y=f(x)-3(1+ln3)x(x>0)的最小值;
②对于任意正实数a,b,c,当a+b+c=3时,求证:a•3a+b•3b+c•3c≥9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°.
(1)求(2$\overrightarrow{a}$-$\overrightarrow{b}$)•($\overrightarrow{a}$+3$\overrightarrow{b}$)的值;
(2)当实数x为何值时,x$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$+3$\overrightarrow{b}$垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.运行如图的程序,输出的结果是24.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=ax3+bx2+cx+d在O、A两点处取得极值,其中O是坐标原点,A在曲线y=xsinx(x∈[$\frac{π}{3}$,$\frac{2π}{3}$])上,则曲线y=f(x)的切线斜率的最大值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.集合A={x|x2-2x<0},B={x|x2<1},则A∪B等于(-1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若直线ax+2y+1=0与直线x-y-2=0互相垂直,那么a的值等于(  )
A.-$\frac{1}{3}$B.2C.-$\frac{2}{3}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列命题中的假命题为(  )
A.设α、β为两个不同平面,若直线l在平面α内,则“α⊥β”是“l⊥β”的必要不充分条件
B.设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=p,则P(-1<ξ<0)=$\frac{1}{2}$-p
C.要得到函数f(x)=cos(2x+$\frac{π}{3}}$)的图象,只需将函数g(x)=sin(2x+$\frac{π}{3}}$)的图象向左平移$\frac{π}{4}$个单位长度
D.?x∈(0,$\frac{π}{2}$),x<sinx

查看答案和解析>>

同步练习册答案