分析 (1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)通过讨论a的范围,求出函数的单调区间,从而求出函数的最大值即可.
解答 解:(1)f(x)=2lnx-ax,(a>0),f′(x)=$\frac{2-ax}{x}$,
x∈(0,$\frac{2}{a}$)时,f′(x)>0,f(x)递增,
x∈($\frac{2}{a}$,+∞)时,f′(x)<0,f(x)递减;
(2)当$\frac{2}{a}$≥2,0<a≤1时,由(1)得f(x)在[1,2]递增,
f(x)max=f(2)=2ln2-2a,
当1<$\frac{2}{a}$<2,即1<a<2时,由(1)得f(x)在[1,$\frac{2}{a}$)递增,在($\frac{2}{a}$,2]递减,
f(x)max=f($\frac{2}{a}$)=2ln2-2lna-2,
当$\frac{2}{a}$≤1即a≥2时,由(1)得f(x)在[1,2]递减,
故f(x)max=f(1)=a,
综上,f(x)max=$\left\{\begin{array}{l}{2ln2-2a,0<a≤1}\\{2ln2-2lna-2,1<a<2}\\{a,a≥2}\end{array}\right.$.
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2)(3) | B. | (1)(2)(3) | C. | (2)(4) | D. | (2)(3)(4) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 周期为2π的奇函数 | B. | 周期为$\frac{π}{2}$的奇函数 | ||
| C. | 周期为π的偶函数 | D. | 周期为2π的偶函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a,b都能被5整除 | B. | a,b都不能被5整除 | ||
| C. | a,b有一个能被5整除 | D. | a,b有一个不能被5整除 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①③ | B. | ②④ | C. | ①④ | D. | ②③ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com