精英家教网 > 高中数学 > 题目详情
已知圆C:(x-2)2+y2=2,若直线l与圆C相切,且在两坐标轴上的截距相等,求直线l的方程.
考点:圆的切线方程
专题:直线与圆
分析:当直线过原点时斜率存在,设方程为y=kx,当直线不过原点时,设直线的方程为
x
a
+
y
a
=1,分别联立方程由△=0可得.
解答: 解:当直线过原点时斜率存在,设方程为y=kx,
联立
y=kx
(x-2)2+y2=2
消去y可得(k2+1)x2-4x+2=0,
由相切可得△=16-8(k2+1)=0,解得k=±1,
∴所求直线的方程为y=±x,即x±y=0;
当直线不过原点时,设直线的方程为
x
a
+
y
a
=1,即y=a-x,
联立
y=a-x
(x-2)2+y2=1
消去y可得2x2-(4+2a)x+a2+3=0,
由相切可得△=(4+2a)2-8(a2+3)=0,解得a=2±
2

∴所求直线的方程为x+y-(2±
2
)=0
综上可得所求直线的方程为:x±y=0或x+y-(2±
2
)=0
点评:本题考查直线与圆的相切关系,涉及分类讨论的思想和一元二次方程的根与判别式的关系,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱柱ABCD-A1B1C1D1的底面ABCD是平行四边形,且AB=1,BC=2,∠ABC=60°,E为BC的中点,AA1⊥平面ABCD.
(1)求证:B1C∥平面A1DE;
(2)求证:平面A1AE⊥平面A1DE.

查看答案和解析>>

科目:高中数学 来源: 题型:

某小学生同时参加了“掷实心球”和“引体向上”两个科目的测试,每个科目的成绩有7分,6分,5分,4分,3分,2分1分共7个分数等级,经测试,该校某班每位学生每科成绩都不少于3分,学生测试成绩的数据统计二1,2,所示,其中“掷实心球”科目成绩为3分的学生有2人.

(1)求该班学生“引体向上”科目成绩为7分的人数;
(2)已知该班学生中恰有3人两个科目成绩均为7分,在至少一个科目成绩为7分的学生中,随机抽取2人,求这2人两个科目成绩均为7分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

若某空间几何体的三视图如图所示,则该几何体的体积是(  )
A、3B、4C、6D、12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2,g(x)=-x2+bx-10,且直线y=4x-6是曲线y=g(x)的一条切线.
(1)求b的值;
(2)求与曲线y=f(x)和y=g(x)都相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=logax+x-b(2<a<3<b<4)的零点所在的一个区间是(  )
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)的图象如图所示,则f(x)的解析式可能是(  )
A、f(x)=2lnx+x-1
B、f(x)=2lnx-x+1
C、f(x)=2xlnx
D、f(x)=
2lnx
x

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,A的外角平分线交BC的延长线于D,已知AB:AC=2:1,求BD:DC.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中的假命题是(  )
A、?x∈R,lgx=0
B、?x∈R,tanx=2
C、?x∈R,x2≥0
D、?x∈R,2 x2+2x>1

查看答案和解析>>

同步练习册答案