精英家教网 > 高中数学 > 题目详情
已知椭圆的离心率等于,点在椭圆上.
(I)求椭圆的方程;
(Ⅱ)设椭圆的左右顶点分别为,,过点的动直线与椭圆相交于,两点,是否存在定直线,使得的交点总在直线上?若存在,求出一个满足条件的值;若不存在,说明理由。
(I)   
(Ⅱ) 存在定直线:,使得的交点总在直线上,的值是.

试题分析:(1)由
又点在椭圆上,,所以椭圆方程:;    
(2)当垂直轴时,,则的方程是:
的方程是:,交点的坐标是:,猜测:存在常数,
即直线的方程是:使得的交点总在直线上,
证明:设的方程是,点
的方程代入椭圆的方程得到:
即:
从而:,      
因为:共线,所以:
要证明共线,即要证明,    
即证明:,即:
即:因为:成立,
所以点在直线上.综上:存在定直线:,使得的交点总在直线上,的值是.
点评:本题考查椭圆方程的求法,考查满足条件的方程是否存在,综合性强,难度大,有一定的探索性,解题时要认真审题,仔细解答,注意等价转化思想的合理运用
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,椭圆的顶点为,焦点为.

(Ⅰ)求椭圆C的方程;
(Ⅱ)设n 为过原点的直线,是与n垂直相交于P点,与椭圆相交于A, B两点的直线,.是否存在上述直线使成立?若存在,求出直线的方程;并说出;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知动点在椭圆上,若点坐标为,,且,则的最小值是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面直角坐标系中,若双曲线的焦距为8,则  

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数)的图象恒过定点,椭圆
)的左,右焦点分别为,直线经过点且与⊙相切.
(1)求直线的方程;
(2)若直线经过点并与椭圆轴上方的交点为,且,求内切圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知曲线Cy=2x2,点A(0,-2)及点B(3,a),从点A观察点B,要实现不被曲线C挡住,则实数a的取值范围是(  )
A.(4,+∞)B.(-∞,4)
C.(10,+∞)D.(-∞,10)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆mx2 + ny2 = 1与直线x+y-1=0交于A、B两点,过原点与线段AB中点的直线的斜率为,则=(  )
A.     B.        C.      D. 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线l过双曲线C的一个焦点,且与C的对称轴垂直,lC交于AB两点,C的实轴长的2倍,则双曲线C的离心率为(    )
A.B.2C.D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线的两个焦点恰为椭圆的两个顶点,且离心率为2,则该双曲线的标准方程为    (  )
A.B.C.D.

查看答案和解析>>

同步练习册答案