精英家教网 > 高中数学 > 题目详情
已知直线l过双曲线C的一个焦点,且与C的对称轴垂直,lC交于AB两点,C的实轴长的2倍,则双曲线C的离心率为(    )
A.B.2C.D.3
C

试题分析:根据题意,由于直线l过双曲线C的一个焦点,且与C的对称轴垂直,可知该焦点坐标(-c,0),且可知当x=-c时,y= ,那么可知b2=2a2, c2-a2=2a2, c2=3a2,∴e=,选C.
点评:本题考查双曲线的性质和应用,解题时要注意公式的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆的左焦点为F,过点F的直线交椭圆于A、B两点,线段AB的中点为G,AB的中垂线与x轴和y轴分别交于D、E两点.

(Ⅰ)若点G的横坐标为,求直线AB的斜率;
(Ⅱ)记△GFD的面积为S1,△OED(O为原点)的面积为S2
试问:是否存在直线AB,使得S1=S2?说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率等于,点在椭圆上.
(I)求椭圆的方程;
(Ⅱ)设椭圆的左右顶点分别为,,过点的动直线与椭圆相交于,两点,是否存在定直线,使得的交点总在直线上?若存在,求出一个满足条件的值;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆C以抛物线的焦点为右焦点,且经过点A(2,3).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若分别为椭圆的左右焦点,求的角平分线所在直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆(a>b>0)的离心率为,以原点为圆心,椭圆短半轴长半径的圆与直线y=x+ 相切.
(1)求椭圆的方程;
(2)设直线与椭圆在轴上方的一个交点为是椭圆的右焦点,试探究以
直径的圆与以椭圆长轴为直径的圆的位置关系.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线的焦点与椭圆的右焦点重合.(Ⅰ)求抛物线的方程;
(Ⅱ)动直线恒过点与抛物线交于AB两点,与轴交于C点,请你观察并判断:在线段MAMBMCAB中,哪三条线段的长总能构成等比数列?说明你的结论并给出证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆的左右焦点分别为,由4个点组成一个高为,面积为的等腰梯形.
(1)求椭圆的方程;
(2)过点的直线和椭圆交于两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线Cl:y2= 2x的焦点为F1,抛物线C2:y=2x2的焦点为F2,则过F1且与F1F2垂直的直线的一般方程式为
A.2x- y-l=0B.2x+ y-1=0
C.4x-y-2 =0D.4x-3y-2 =0

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

曲线+=1.(m<6) 与+=1.(5<m<9)的(   )
A.准线相同B.离心率相同C.焦点相同D.焦距相同

查看答案和解析>>

同步练习册答案