精英家教网 > 高中数学 > 题目详情
3.已知a,b∈R,则“a2+b2≤1”是“|a|+|b|≤1”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 由“|a|+|b|≤1”平方可得a2+b2≤1.反之不成立:例如取$a=b=\frac{\sqrt{2}}{2}$,满足a2+b2≤1,不满足“|a|+|b|≤1”.

解答 解:由“|a|+|b|≤1”可得a2+b2+2|ab|≤1,∴a2+b2≤1.
反之不成立:例如取$a=b=\frac{\sqrt{2}}{2}$,满足a2+b2≤1,不满足“|a|+|b|≤1”.
∴“a2+b2≤1”是“|a|+|b|≤1”的必要不充分条件.
故选:B.

点评 本题考查了不等式的性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.用分层抽样的方式对某品牌同一批次两种型号的产品进行抽查,已知样本容量为80,其中有50件甲型号产品,乙型号产品总数为1800,则该批次产品总数为4800.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知条件p:x2-3x-4≤0;条件q:x2-6x+9-m2≤0,若¬q是¬p的充分不必要条件,则实数m的取值范围是m≥4或m≤-4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知实数a,b,则“$\sqrt{a}$<$\sqrt{b}$”是“lna<lnb”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若直线y=3x+b与y=nx+m相交,且将圆x2+y2-6x-8y+21=0的周长四等分,则m+b-n的值为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an},{bn}满足下列条件:a1=1,an+1-2an=2n+1,bn=an+1-an
(Ⅰ)求{bn}的通项公式;
(Ⅱ)设{$\frac{1}{{b}_{n}}$}的前n项和为Sn,求证:对任意正整数n,均有$\frac{1}{4}$≤Sn<$\frac{9}{20}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an},{bn}满足下列条件:an=6•2n-1-2,b1=1,an=bn+1-bn
(Ⅰ)求{bn}的通项公式;
(Ⅱ)比较an与2bn的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知抛物线 C:y2=2px(p>0),过焦点且斜率为1的直线m交抛物线C于A,B两点,以线段AB为直径的圆在y轴上截得的弦长为$2\sqrt{7}$.
(1)求抛物线C的方程;
(2)过点P(0,2)的直线l交抛物线C于F、G两点,交x轴于点D,设$\overrightarrow{PF}={λ_1}\overrightarrow{FD},\overrightarrow{PG}={λ_2}\overrightarrow{GD}$,试问λ12是否为定值?若是,求出该定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数y=f(x)的导函数为f′(x),且$f(x)={x^2}f'(\frac{π}{3})+sinx$,则$f'(\frac{π}{3})$=(  )
A.$\frac{3}{6-4π}$B.$\frac{3}{6-2π}$C.$\frac{3}{6+4π}$D.$\frac{3}{6+2π}$

查看答案和解析>>

同步练习册答案