精英家教网 > 高中数学 > 题目详情
12.已知f(x)=2x+3,且f(m)=6,则m等于$\frac{3}{2}$.

分析 直接利用函数的解析式列出方程,求解即可.

解答 解:f(x)=2x+3,且f(m)=6,
可得2m+3=6,则m=$\frac{3}{2}$.
故答案为:$\frac{3}{2}$.

点评 本题考查函数的解析式的应用,函数的零点与方程的根的关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.(1)在数列{an}中,a1=2,an+1=an+$\frac{1}{n(n+1)}$,求数列{an}的通项公式.
(2)若数列{an}满足:a1=1,an+1=an+2n,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在平面直角坐标系xOy中,已知动圆M过定点A(-$\sqrt{3}$,0),且与定圆B:(x-$\sqrt{3}$)2+y2=16相切,记动圆圆心M的轨迹为曲线C.
(1)求曲线C的方程;
(2)已知P,Q是曲线C上的动点,且满足直线OP,OQ的斜率乘积等于λ(λ常数).
设动点N(x0,y0)满足$\overrightarrow{ON}$=m$\overrightarrow{OP}$+n$\overrightarrow{OQ}$(m,n∈R).
①若m=1,n=2,λ=-$\frac{1}{4}$,求证:x02+4y02为定值;
②是否存在定值λ,使得点N也在曲线C上,若存在,求出λ的值以及m,n满足的条件;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=|x-a|-$\frac{3}{x}$+a-2有且仅有三个零点,且它们成等差数列,则实数a的取值集合为{a|a=$\frac{5+3\sqrt{33}}{8}$或-$\frac{9}{5}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.将1,2,3,…,12无重复地填在如图的12个空格中,要求每一行的数从左到右逐渐增大,每一列的数从上到下逐渐增大,且5和6已经填好,固定在图中的位置上时,符合要求的填法共有9种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.判断下列两个集合之间的关系:
(1)A={…,-5,-3,-1,1,3,5,…},B={x|x=2m+1,m∈Z};
(2)C={x|x=2m-1,m∈Z},D=Z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设全集U={x∈N*|x≤9},若∁U(A∪B)={1,3},A∩(∁UB)={2,4},则集合B={5,6,7,8,9}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知α为第一象限角,且$\frac{1+tanα}{1-tanα}$=3+2$\sqrt{2}$,则cosα=(  )
A.$\frac{\sqrt{6}}{2}$B.$\frac{\sqrt{6}}{3}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.若集合A={x|(x+1)(x-1)=0},B={x|x2-2x+a=0},且A∪B=A,求实数a的取值的集合.

查看答案和解析>>

同步练习册答案