【题目】多面体
中,平面
∥平面
,
∥
,
平面
,
为直角梯形,
,
.
![]()
(1)求证:直线
平面
;
(2)求直线
与平面
所成角的正弦值.
科目:高中数学 来源: 题型:
【题目】如下图,在平面直角坐标系
中,椭圆
的左、右焦点分别为
,
,已知点
和
都在椭圆上,其中
为椭圆的离心率.
![]()
(1)求椭圆的方程;
(2)设
,
是椭圆上位于
轴上方的两点,且直线
与直线
平行,
与
交于点
,
(i)若
,求直线
的斜率;
(ii)求证:
是定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学为了解高一学生的视力健康状况,在高一年级体检活动中采用统一的标准对数视力表,按照《中国学生体质健康监测工作手册》的方法对1039名学生进行了视力检测,判断标准为:双眼裸眼视力
为视力正常,
为视力低下,其中
为轻度,
为中度,
为重度.统计检测结果后得到如图所示的柱状图.
![]()
(1)求该校高一年级轻度近视患病率;
(2)根据保护视力的需要,需通知检查结果为“重度近视”学生的家长带孩子去医院眼科进一步检查和确诊,并开展相应的矫治,则该校高一年级需通知的家长人数约为多少人?
(3)若某班级6名学生中有2人为视力正常,则从这6名学生中任选2人,恰有1人视力正常的概率是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
、
分别为双曲线
的左右焦点,左右顶点为
、
,
是双曲线上任意一点,则分别以线段
、
为直径的两圆的位置关系为( )
A. 相交B. 相切C. 相离D. 以上情况均有可能
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量
函数
,其图象的两条相邻对称轴间的距离为
.
(1)求函数
的解析式;
(2)将函数
的图象上各点的横坐标缩短为原来的
,纵坐标不变,再将图象向右平移
个单位,得到
的图象,求
的单调递增区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知:①函数
;
②向量
,
,且ω>0,
;
③函数
的图象经过点![]()
请在上述三个条件中任选一个,补充在下面问题中,并解答.
已知 ,且函数f(x)的图象相邻两条对称轴之间的距离为
.
(1)若
,且
,求f(θ)的值;
(2)求函数f(x)在[0,2π]上的单调递减区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某电动车售后服务调研小组从汽车市场上随机抽取20辆纯电动汽车调查其续驶里程(单次充电后能行驶的最大里程),被调查汽车的续驶里程全部介于50公里和300公里之间,将统计结果分成5组:
,绘制成如图所示的频率分布直方图.
![]()
(1)求续驶里程在
的车辆数;
(2)求续驶里程的平均数;
(3)若从续驶里程在
的车辆中随机抽取2辆车,求其中恰有一辆车的续驶里程在
内的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com