分析 利用同角三角函数的基本关系式化简变形.
(1)直接利用周期公式求得周期,并求得f($\frac{π}{4}$);
(2)由f(α)+cosα=$\frac{1}{5}$,α∈(0,π)求得2sinxcosx=$-\frac{24}{25}$,可得cosx-sinx<0,放入根号内即可求值.
解答 解:f(x)=$\frac{1+sinx+cosx+2sinxcosx}{1+sinx+cosx}$-cosx=$\frac{si{n}^{2}x+cco{s}^{2}x+2sinxcosx+sinx+cosx}{1+sinx+cosx}$-cosx
=$\frac{(sinx+cosx)^{2}+sinx+cosx}{1+sinx+cosx}-cosx$=sinx+cosx-cosx=sinx.
(1)f(x)的周期T=2π,f($\frac{π}{4}$)=sin$\frac{π}{4}$=$\frac{\sqrt{2}}{2}$;
(2)由f(α)+cosα=$\frac{1}{5}$,α∈(0,π),得sinx+cosx=$\frac{1}{5}$,
两边平方得2sinxcosx=$-\frac{24}{25}$,则sinx>0,cosx<0,
∴cosx-sinx=-$\sqrt{(cosx-sinx)^{2}}=-\sqrt{(cosx+sinx)^{2}-4sinxcosx}$=$-\sqrt{\frac{1}{25}+\frac{24}{25}}=-\frac{7}{5}$.
点评 本题考查三角函数的化简求值,考查了同角三角函数基本关系式的应用,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 1 | C. | $\frac{3}{4}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<b<c | B. | b<c<a | C. | c<b<a | D. | a<c<b |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{2}$ | B. | $\sqrt{5}$ | C. | $\frac{\sqrt{3}}{2}$ 或 $\frac{\sqrt{5}}{2}$ | D. | $\frac{\sqrt{3}}{2}$或$\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{3}{4}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com