分析 由椭圆方程求出c,设出M坐标,由已知及M在椭圆上联立方程组求出M纵坐标的绝对值,代入三角形面积公式得答案.
解答 解:如图,![]()
由椭圆$\frac{x^2}{36}$+$\frac{y^2}{16}$=1,得a2=36,b2=16,则$c=\sqrt{{a}^{2}-{b}^{2}}=\sqrt{20}=2\sqrt{5}$,
设M(m,n),则$\left\{\begin{array}{l}{{m}^{2}+{n}^{2}=20}\\{\frac{{m}^{2}}{36}+\frac{{n}^{2}}{16}=1}\end{array}\right.$,解得|m|=$\frac{6\sqrt{5}}{5}$,|n|=$\frac{8\sqrt{5}}{5}$.
∴△OMF1的面积为S=$\frac{1}{2}×2\sqrt{5}×\frac{8\sqrt{5}}{5}=8$.
故答案为:8.
点评 本题考查椭圆的简单性质,考查计算能力,是基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 12 | B. | 13 | C. | 14 | D. | 15 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com