精英家教网 > 高中数学 > 题目详情
4.求适合下列条件的圆锥曲线的标准方程.
(1)a=$\sqrt{6}$,b=1,焦点在x轴上的椭圆;
(2)与双曲线$\frac{x^2}{16}$-$\frac{y^2}{4}$=1有相同焦点,且经过点(3$\sqrt{2}$,2)的双曲线.

分析 (1)由焦点在x轴上的椭圆的标准方程,即可得到;
(2)求得已知双曲线的焦点,设所求双曲线的标准方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0),由题意可得a2+b2=20,$\frac{18}{{a}^{2}}$-$\frac{4}{{b}^{2}}$=1,解方程可得a,b,进而得到所求双曲线的标准方程.

解答 解:(1)由a=$\sqrt{6}$,b=1,焦点在x轴上的椭圆,
可得椭圆方程为$\frac{{x}^{2}}{6}$+y2=1;
(2)设所求双曲线的标准方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0),
由双曲线$\frac{x^2}{16}$-$\frac{y^2}{4}$=1的焦点为(±2$\sqrt{5}$,0),
可得c=2$\sqrt{5}$,即a2+b2=20,
又经过点(3$\sqrt{2}$,2),可得$\frac{18}{{a}^{2}}$-$\frac{4}{{b}^{2}}$=1,
解方程可得a=2$\sqrt{3}$,b=2$\sqrt{2}$.
则所求双曲线的方程为$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{8}$=1.

点评 本题考查圆锥曲线的方程的求法,注意运用圆锥曲线的几何性质,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.复数$\frac{2+i}{1-2i}$等于(  )
A.iB.-iC.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x3+ax+b(a,b∈R),且f(x)在x=$\frac{\sqrt{3e}}{3}$时取极小值0(其中e为自然对数的底数).
(1)求a,b的值;
(2)记g(x)=(-a)x,m、n是函数g(x)定义域内的任意值,且m≠n,判断g($\frac{m+n}{2}$)、$\frac{g(m)+g(n)}{2}$、$\frac{g(m)-g(n)}{m-n}$的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=sin(x+$\frac{π}{6}$)+sin(x-$\frac{π}{6}$)+cosx+a的最大值为1.
(1)求常数a的值;
(2)求f(x)的单调递增区间;
(3)求f(x)≥0成立的x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(x)=$\frac{1+sinx+cosx+2sinxcosx}{1+sinx+cosx}$-cosx,
(1)求f(x)的周期及f($\frac{π}{4}$);
(2)若f(α)+cosα=$\frac{1}{5}$,α∈(0,π),求cosα-sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,在圆O中,直径AB与弦CD垂直,垂足为E,EF⊥DB,垂足为F,若AE=1,DF•DB=5,则AB=6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.实数x,y满足$\left\{\begin{array}{l}x+2y≤8\\ 2x+y≤10\\ x≥0\\ y≥0\end{array}\right.$,那么z=3x+y的最大值为(  )
A.12B.13C.14D.15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=$\left\{\begin{array}{l}{\frac{1}{4}x+1,x≤1}\\{lnx,x>1}\end{array}\right.$,若函数g(x)=f(x)-ax恰有两个零点时,则实数a的取值范围为(  )
A.(0,$\frac{1}{e}$)B.(0,$\frac{1}{4}$)C.[$\frac{1}{4}$,$\frac{1}{e}$)D.[$\frac{1}{4}$,e)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设实数a,b,c满足:a>b>1,c>1,则下列不等式中不成立的是(  )
A.$\frac{b}{a}<\frac{a+bc}{b+ac}<a$B.$\frac{1}{a}<\frac{a+bc}{b+ac}<b$C.$\frac{1}{c}<\frac{a+bc}{b+ac}<c$D.$\frac{1}{{\sqrt{ab}}}<\frac{a+bc}{b+ac}<\sqrt{ab}$

查看答案和解析>>

同步练习册答案