精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=$\left\{\begin{array}{l}{\frac{1}{4}x+1,x≤1}\\{lnx,x>1}\end{array}\right.$,若函数g(x)=f(x)-ax恰有两个零点时,则实数a的取值范围为(  )
A.(0,$\frac{1}{e}$)B.(0,$\frac{1}{4}$)C.[$\frac{1}{4}$,$\frac{1}{e}$)D.[$\frac{1}{4}$,e)

分析 由题意,方程f(x)=ax恰有两个不同实数根,等价于y=f(x)与y=ax有2个交点,又a表示直线y=ax的斜率,求出a的取值范围.

解答 解:∵方程f(x)=ax恰有两个不同实数根,
∴y=f(x)与y=ax有2个交点,
又∵a表示直线y=ax的斜率,
∴x>1时,y′=$\frac{1}{x}$,
设切点为(x0,y0),k=$\frac{1}{{x}_{0}}$,
∴切线方程为y-y0=$\frac{1}{{x}_{0}}$(x-x0),
而切线过原点,∴y0=1,x0=e,k=$\frac{1}{e}$,
∴直线l1的斜率为$\frac{1}{e}$,
又∵直线l2与y=$\frac{1}{4}$x+1平行,
∴直线l2的斜率为$\frac{1}{4}$,
∴实数a的取值范围是[$\frac{1}{4}$,$\frac{1}{e}$).
故选:C.

点评 本题考查了函数的图象与性质的应用问题,解题时应结合图象,以及函数与方程的关系,进行解答,是易错题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.求不等式$\frac{x+1}{|x|-1}$>0的解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求适合下列条件的圆锥曲线的标准方程.
(1)a=$\sqrt{6}$,b=1,焦点在x轴上的椭圆;
(2)与双曲线$\frac{x^2}{16}$-$\frac{y^2}{4}$=1有相同焦点,且经过点(3$\sqrt{2}$,2)的双曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=alnx(a>0),e为自然对数的底数.
(1)当x>0时,求证:f(x)≥a(1-$\frac{1}{x}$);
(2)在区间(1,e)上$\frac{f(x)}{x-1}$>1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知i是虚数单位,若复数z=(2-i)(2+ai)在复平面内对应的点在第四象限内,则实数a的值可以是(  )
A.-2B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\left\{\begin{array}{l}{\frac{2x+1}{{x}^{2}},x<-\frac{1}{2}}\\{x+1,x≥-\frac{1}{2}}\end{array}\right.$,g(x)=x2-4x-4,若存在实数a使得f(a)+g(b)=0,则实数b的取值范围是[-1,5].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若圆C1:x2+y2=16与圆C2:(x-a)2+y2=1相切,则a的值为±5或±3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知三次函数f(x)=ax3+bx(a>0),下列命题正确的是①②.
①函数f(x)关于原点(0,0)中心对称;
②以A(xA,f(xA)),B(xB,f(xB))两不同的点为切点作两条互相平行的切线,分别与f(x)交于C,D两点,则这四个点的横坐标满足关系(xC-xB):(xB-xA):(xA-xD)=1:2:1;
③以A(x0,f(x0))为切点,作切线与f(x)图象交于点B,再以点B为切点作直线与f(x)图象交于点C,再以点C作切点作直线与f(x)图象交于点D,则D点横坐标为-6x0
④若b=-2$\sqrt{2}$,函数f(x)图象上存在四点A,B,C,D,使得以它们为顶点的四边形有且仅有一个正方形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=lnx+$\frac{a}{x}$,x∈(0,3],其图象上任意一点P(x0,y0)处的切线的斜率k≤$\frac{1}{2}$恒成立,则实数a的取值范围是a≥$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案