精英家教网 > 高中数学 > 题目详情
3.求不等式$\frac{x+1}{|x|-1}$>0的解.

分析 对x>0和x<0去掉绝对值,从而化解成分式不等式即可求解.

解答 解:当x≥0时,不等式$\frac{x+1}{|x|-1}$=$\frac{x+1}{x-1}$>0,
等价于$\left\{\begin{array}{l}{x-1≠0}\\{(x+1)(x-1)>0}\end{array}\right.$
解得:x>1或x<-1,
∵x≥0,
∴不等式的解集为(1,+∞).
当x<0时,不等式$\frac{x+1}{|x|-1}$=$\frac{x+1}{-x-1}$=-1,无解.
综上可得:原不等式的解集为(1,+∞).

点评 本题考查不等式的解法,含有绝对值的不等式,就是讨论去掉绝对值符号求解是关键.考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=|x2-2x|,设关于x的方程f[f(x)]=a(a∈R)的实数根的个数为g(a),有下列五个命题:
①g(0)=4;
②g(1)=6;
③当a<0时,g(a)=0;
④当0<a<1时,g(a)=8;
⑤当a>1时,g(a)=3.
其中正确的有①③④(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.复数$\frac{2+i}{1-2i}$等于(  )
A.iB.-iC.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=log0.5(x2-4)的单调减区间为(  )
A.(-∞,0)B.(0,+∞)C.(-∞,-2)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数y=$\sqrt{{2^x}-4}$的定义域为(  )
A.RB.(-2,2)C.(-∞,-$\sqrt{2}$)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知点A(1,-3),B(1,.2),C(5,y)若△ABC是直角三角形,则y的值为-3或2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x3+ax+b(a,b∈R),且f(x)在x=$\frac{\sqrt{3e}}{3}$时取极小值0(其中e为自然对数的底数).
(1)求a,b的值;
(2)记g(x)=(-a)x,m、n是函数g(x)定义域内的任意值,且m≠n,判断g($\frac{m+n}{2}$)、$\frac{g(m)+g(n)}{2}$、$\frac{g(m)-g(n)}{m-n}$的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=sin(x+$\frac{π}{6}$)+sin(x-$\frac{π}{6}$)+cosx+a的最大值为1.
(1)求常数a的值;
(2)求f(x)的单调递增区间;
(3)求f(x)≥0成立的x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=$\left\{\begin{array}{l}{\frac{1}{4}x+1,x≤1}\\{lnx,x>1}\end{array}\right.$,若函数g(x)=f(x)-ax恰有两个零点时,则实数a的取值范围为(  )
A.(0,$\frac{1}{e}$)B.(0,$\frac{1}{4}$)C.[$\frac{1}{4}$,$\frac{1}{e}$)D.[$\frac{1}{4}$,e)

查看答案和解析>>

同步练习册答案