精英家教网 > 高中数学 > 题目详情

【题目】已知△ABC的三个内角A,B,C所对的边分别为a,b,c,向量 =(c+a,b), =(c﹣a,b﹣c),且
(1)求角A的大小;
(2)若a=3,求△ABC周长的取值范围.

【答案】
(1)解:∵ .∴ =(c+a)(c﹣a)+b(b﹣c)=c2﹣a2+b2﹣bc=0,化为:c2+b2﹣a2=bc.

∴cosA= = ,A∈(0,π).

∴A=


(2)解:由正弦定理可得: = = =2

∴b=2 sinB,c=2 sinC,

∴a+b+c=3+2 (sinB+sinC)=3+2 (sinB+sinC)=3+2 (sin( )+sinC)

=6sin +3,

∵C∈ ,∴

∴sin

∴a+b+c∈(6,9].


【解析】(1)由 .可得 =(c+a)(c﹣a)+b(b﹣c)=0,化为:c2+b2﹣a2=bc.利用余弦定理即可得出.(2)由正弦定理可得: = = =2 ,b=2 sinB,c=2 sinC,利用和差公式可得:a+b+c=3+2 (sinB+sinC)=6sin +3,再利用三角函数的单调性值域即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知命题p:“1≤x≤5是x2﹣(a+1)x+a≤0的充分不必要条件”,命题q:“满足AC=6,BC=a,∠CAB=30°的△ABC有两个”.若¬p∧q是真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的圆心在x轴上,点 在圆C上,圆心到直线2x﹣y=0的距离为 ,则圆C的方程为(
A.(x﹣2)2+y2=3
B.(x+2)2+y2=9
C.(x±2)2+y2=3
D.(x±2)2+y2=9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数: 907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
据此估计,这三天中恰有两天下雨的概率近似为(
A.0.35
B.0.25
C.0.20
D.0.15

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种商品价格与该商品日需求量之间的几组对照数据如表:

价格x(元/kg)

10

15

20

25

30

日需求量y(kg)

11

10

8

6

5

参考公式:线性回归方程 ,其中
(1)求y关于x的线性回归方程;
(2)利用(1)中的回归方程,当价格x=40元/kg时,日需求量y的预测值为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an}中,a1+2a2++22a3+…2n﹣1an=(n2n﹣2n+1)t对任意n∈N*成立,其中常数t>0.若关于n的不等式 + + +…+ 的解集为{n|n≥4,n∈N*},则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足:对于任意n∈N*且n≥2时,an+λan﹣1=2n+1,a1=4.
(1)若 ,求证:{an﹣3n}为等比数列;
(2)若λ=﹣1.①求数列{an}的通项公式; ②是否存在k∈N*,使得 +25为数列{an}中的项?若存在,求出所有满足条件的k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一组数据:10.1,9.8,10,x,10.2的平均数为10,则该组数据的方差为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=1,且an+1﹣an=2n , n∈N* , 若 +19≤3n对任意n∈N*都成立,则实数λ的取值范围为

查看答案和解析>>

同步练习册答案