9£®ÒÑÖªÊýÁÐ{an}Âú×ã${a_1}=\frac{1}{2}$£¬${a_{n+1}}=\frac{{2{a_n}}}{{1+{a_n}}}£¬n¡Ê{N^*}$£®
£¨I£©ÇóÖ¤£ºÊýÁÐ$\left\{{\frac{1}{a_n}-1}\right\}$ÊǵȱÈÊýÁУ¬²¢ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨II£©Áîbn=$\frac{n}{{a}_{n}}$£¬£¨n¡ÊN*£©£¬ÉèÊýÁÐ{bn}µÄǰnÏîºÍΪSn£¬ÇóÖ¤£ºµ±n¡Ý3ʱ£¬Sn£¾$\frac{{n}^{2}}{2}$+4£®

·ÖÎö £¨I£©Í¨¹ý¶Ô${a_{n+1}}=\frac{{2{a_n}}}{{1+{a_n}}}£¬n¡Ê{N^*}$È¡µ¹Êý¡¢±äÐοÉÖªan£¾0¡¢$\frac{1}{{a}_{n+1}}$-1=$\frac{1}{2}$£¨$\frac{1}{{a}_{n}}$-1£©£¬½ø¶ø¿ÉÖªÊýÁÐ{$\frac{1}{{a}_{n}}$-1}ÊÇÊ×ÏîΪ1¡¢¹«±ÈΪ$\frac{1}{2}$µÄµÈ±ÈÊýÁУ¬ÀûÓõȱÈÊýÁÐͨÏʽ¼ÆËã¼´µÃ½áÂÛ£»
£¨II£©Í¨¹ý£¨I£©¿ÉÖªbn=n+n•$\frac{1}{{2}^{n-1}}$£¬½ø¶øÀûÓ÷Ö×éÇóºÍ·¨¡¢´íλÏà¼õ·¨¼ÆËã¿ÉÖªSn=$\frac{{n}^{2}}{2}$+4+$\frac{n•{2}^{n-1}-2n-4}{{2}^{n}}$£¬µ±n¡Ý3ʱ·ÅËõ¼´µÃ½áÂÛ£®

½â´ð Ö¤Ã÷£º£¨I£©ÓÉÌâÒâÖªan£¾0£¬$\frac{1}{{a}_{n+1}}$-1=$\frac{1+{a}_{n}}{2{a}_{n}}$-1=$\frac{1}{2}$£¨$\frac{1}{{a}_{n}}$-1£©£¬
ÓÖÒòΪ$\frac{1}{{a}_{1}}$-1=1£¬
ËùÒÔÊýÁÐ{$\frac{1}{{a}_{n}}$-1}ÊÇÊ×ÏîΪ1¡¢¹«±ÈΪ$\frac{1}{2}$µÄµÈ±ÈÊýÁУ¬
ËùÒÔ$\frac{1}{{a}_{n}}$-1=$\frac{1}{{2}^{n-1}}$£¬¹Ê$\frac{1}{{a}_{n}}$=1+$\frac{1}{{2}^{n-1}}$£¬an=$\frac{{2}^{n-1}}{1+{2}^{n-1}}$£»
£¨II£©ÓÉ£¨I£©¿ÉÖªbn=n+n•$\frac{1}{{2}^{n-1}}$£¬
ÔòSn=£¨1+2+3+¡­+n£©+£¨1•$\frac{1}{{2}^{0}}$+2•$\frac{1}{2}$+3•$\frac{1}{{2}^{2}}$+¡­+n•$\frac{1}{{2}^{n-1}}$£©
=$\frac{n£¨n+1£©}{2}$+£¨1•$\frac{1}{{2}^{0}}$+2•$\frac{1}{2}$+3•$\frac{1}{{2}^{2}}$+¡­+n•$\frac{1}{{2}^{n-1}}$£©£¬
$\frac{1}{2}$Sn=$\frac{n£¨n+1£©}{4}$+[1•$\frac{1}{2}$+2•$\frac{1}{{2}^{2}}$+¡­+£¨n-1£©•$\frac{1}{{2}^{n-1}}$+n•$\frac{1}{{2}^{n}}$]£¬
Á½Ê½Ïà¼õ£¬µÃ£º$\frac{1}{2}$Sn=$\frac{n£¨n+1£©}{4}$+£¨$\frac{1}{{2}^{0}}$+$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+¡­+$\frac{1}{{2}^{n-1}}$-n•$\frac{1}{{2}^{n}}$£©
=$\frac{n£¨n+1£©}{4}$+$\frac{1-\frac{1}{{2}^{n}}}{1-\frac{1}{2}}$-n•$\frac{1}{{2}^{n}}$
=$\frac{n£¨n+1£©}{4}$+2-$\frac{1}{{2}^{n-1}}$-n•$\frac{1}{{2}^{n}}$£¬
ËùÒÔSn=$\frac{{n}^{2}}{2}$+4+$\frac{n•{2}^{n-1}-2n-4}{{2}^{n}}$£¬
µ±n¡Ý3ʱ£¬n•2n-1-2n-4¡Ýn•22-2n-4£¾0£¬
ËùÒÔSn£¾$\frac{{n}^{2}}{2}$+4£®

µãÆÀ ±¾ÌâÊÇÒ»µÀ¹ØÓÚÊýÁÐÓë²»µÈʽµÄ×ÛºÏÌ⣬¿¼²éÊýÁеÄͨÏǰnÏîºÍ£¬¿¼²é´íλÏà¼õ·¨£¬¿¼²éÔËËãÇó½âÄÜÁ¦£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÈçͼËùʾ£¬ÔÚÀⳤΪ 6µÄÕý·½ÌåABCD-A1B1C1D1ÖУ¬µãE£¬F·Ö±ðÊÇÀâC1D1£¬B1C1µÄÖе㣬¹ýA£¬E£¬FÈýµã×÷¸ÃÕý·½ÌåµÄ½ØÃ棬Ôò½ØÃæµÄÖܳ¤Îª£¨¡¡¡¡£©
A£®$18+3\sqrt{2}$B£®$6\sqrt{13}+3\sqrt{2}$C£®$6\sqrt{5}+9\sqrt{2}$D£®$10+3\sqrt{2}+4\sqrt{10}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÒÑÖªº¯Êýf£¨x£©=Asin£¨¦Øx+¦Õ£©+B£¬ÆäÖÐA¡¢B¡¢¦Ø¡¢¦Õ¾ùΪʵÊý£¬ÇÒA£¾0£¬¦Ø£¾0£¬|¦Õ|£¼$\frac{¦Ð}{2}$£¬Ð´³öÂú×ãf£¨1£©=2£¬$f£¨2£©=\frac{1}{2}$£¬f£¨3£©=-1£¬f£¨4£©=2µÄÒ»¸öº¯Êýf£¨x£©=$\sqrt{3}$sin£¨$\frac{2¦Ð}{3}$x-$\frac{¦Ð}{3}$£©+$\frac{1}{2}$£¨Ð´³öÒ»¸ö¼´¿É£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªº¯Êýf£¨x£©=ax+lnx£¬ÆäÖÐa¡ÊR£®
£¨¢ñ£©Èôf£¨x£©ÔÚÇø¼ä[1£¬2]ÉÏΪÔöº¯Êý£¬ÇóaµÄȡֵ·¶Î§£»
£¨¢ò£©µ±a=-eʱ£¬Ö¤Ã÷£ºf£¨x£©+2¡Ü0£»
£¨¢ó£©µ±a=-eʱ£¬ÊÔÅжϷ½³Ì|f£¨x£©|=$\frac{lnx}{x}$+$\frac{3}{2}$ÊÇ·ñÓÐʵÊý½â£¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÔÚ¡÷ABCÖУ¬a2=b2+c2-bc£¬ÔòAµÈÓÚ£¨¡¡¡¡£©
A£®45¡ãB£®120¡ãC£®60¡ãD£®30¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑÖªµãPÊÇÕýÈý½ÇÐÎABCËùÔÚÆ½ÃæÍâÒ»µã£¬PA=PB=PC=$\frac{2}{3}$£¬AB=1£¬ÔòPCºÍÆ½ÃæABCËù³ÉµÄ½ÇÊÇ£¨¡¡¡¡£©
A£®90¡ãB£®60¡ãC£®45¡ãD£®30¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªº¯Êý$f£¨x£©=lnx+\frac{2a}{x}£¬a¡ÊR$£®
£¨1£©Èôº¯Êýf£¨x£©ÔÚ[4£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨2£©Èôº¯Êýf£¨x£©ÔÚ[1£¬e]ÉϵÄ×îСֵΪ3£¬ÇóʵÊýaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖªx£¾0£¬y£¾0ÇÒ2x+3y=8£¬Ôò$\frac{2}{x}+\frac{3}{y}$µÄ×îСֵΪ£¨¡¡¡¡£©
A£®$\frac{25}{8}$B£®$\frac{25}{4}$C£®25D£®$\frac{4}{25}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªÖ±Ïßl1£ºy=2x£¬Ö±Ïßl£ºy=3x+3£®Çól1¹ØÓÚl¶Ô³ÆµÄÖ±Ïßl2µÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸