精英家教网 > 高中数学 > 题目详情
4.在△ABC中,a2=b2+c2-bc,则A等于(  )
A.45°B.120°C.60°D.30°

分析 利用余弦定理即可得出.

解答 解:∵a2=b2+c2-bc,∴bc=b2+c2-a2
∴cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{bc}{2bc}$=$\frac{1}{2}$.
A∈(0°,180°),
∴A=60°.
故选:C.

点评 本题考查了余弦定理、三角函数求值,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.甲、乙、丙三位同学获得某项竞赛活动的前三名,但具体名次未知.3人作出如下预测:
甲说:我不是第三名;
乙说:我是第三名;
丙说:我不是第一名.
若甲、乙、丙3人的预测结果有且只有一个正确,由此判断获得第一名的是乙.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设函数y=f(x)存在反函数y=f-1(x),且函数y=x-f(x)的图象经过点(2,5),则函数y=f-1(x)+3的图象一定过点(-3,5).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.下列说法中,正确的有③④.(写出所有正确说法的序号)
①已知关于x的不等式mx2+mx+1>0的解集为R,则实数m的取值范围是0<m<4.
②已知等比数列{an}的前n项和为Sn,则Sn、S2n-Sn、S3n-S2n也构成等比数列.
③已知a>0,b>-1,且a+b=1,则$\frac{{a}^{2}+2}{a}$+$\frac{{b}^{2}}{b+1}$的最小值为$\frac{3+2\sqrt{2}}{2}$.
④在△DEF中,DE=2,EF=3,∠DEF=60°,M是DF的中点,N在EF上,且DN⊥ME,则$\overrightarrow{DN}$•$\overrightarrow{EF}$=$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.计算
(1)(5+2i)2•(1-i)
(2)$\frac{7+3i}{3-4i}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}满足${a_1}=\frac{1}{2}$,${a_{n+1}}=\frac{{2{a_n}}}{{1+{a_n}}},n∈{N^*}$.
(I)求证:数列$\left\{{\frac{1}{a_n}-1}\right\}$是等比数列,并求数列{an}的通项公式;
(II)令bn=$\frac{n}{{a}_{n}}$,(n∈N*),设数列{bn}的前n项和为Sn,求证:当n≥3时,Sn>$\frac{{n}^{2}}{2}$+4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数g(x)=ex+e-x,其中e是自然对数的底数,正数k满足:存在x0∈[1,+∞),使得g(x0)≤k(-x02+3x0)成立,则k的取值范围为($\frac{1}{2}$(e+$\frac{1}{e}$),+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.从含有4件正品、2件次品的6件产品中,随机抽取3件,则恰好抽到1件次品的概率(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知$\frac{4+mi}{1+2i}$∈R,且m∈R,则|m+6i|=(  )
A.6B.8C.8$\sqrt{3}$D.10

查看答案和解析>>

同步练习册答案