精英家教网 > 高中数学 > 题目详情
14.已知$\frac{4+mi}{1+2i}$∈R,且m∈R,则|m+6i|=(  )
A.6B.8C.8$\sqrt{3}$D.10

分析 利用两个复数相除,分子和分母同时乘以分母的共轭复数,化简复数为 a+bi的形式,由 虚部为0,求得m的值,最后复数求模.

解答 解:∵复数$\frac{4+mi}{1+2i}$=$\frac{(4+mi)(1-2i)}{(1+2i)(1-2i)}$=$\frac{4+2m+(m-8)i}{5}$=$\frac{2m+4}{5}$i,
因为复数$\frac{4+mi}{1+2i}$∈R,故m=8,
|m+6i|=|8+6i|=10,
故选 D.

点评 本题考查复数是实数的概念、复数求模,本题考查两个复数代数形式的除法,两个复数相除,分子和分母同时乘以分母的共轭复数.转化为a+bi的形式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.在△ABC中,a2=b2+c2-bc,则A等于(  )
A.45°B.120°C.60°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知抛物线x2=y,点A,B在该抛物线上且位于y轴的两侧,且直线AB与y轴交于点(0,a),若∠AOB为锐角(其中O为坐标原点),则实数a的取值范围是(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.实数a,b,c不全为0等价于为(  )
A.a,b,c均不为0B.a,b,c中至多有一个为0
C.a,b,c中至少有一个为0D.a,b,c中至少有一个不为0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在平面直角坐标系xoy中,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为e=$\frac{\sqrt{6}}{3}$,a=$\sqrt{6}$,直线l与x轴交于点E,与椭圆C交于A、B两点.
(1)求椭圆C的方程;
(2)若点E的坐标为($\frac{\sqrt{3}}{2}$,0),点A在第一象限且横坐标为$\sqrt{3}$,连结点A与原点O的直线交椭圆C于另一点P,求△PAE的面积;
(3)x轴上存在定点E,使得$\frac{1}{E{A}^{2}}$+$\frac{1}{E{B}^{2}}$恒为定值,请指出定点E的坐标,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知直线l1:y=2x,直线l:y=3x+3.求l1关于l对称的直线l2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)若tanα=2,求$\frac{sin(2π-α)+cos(π+α)}{{cos(α-π)-cos(\frac{3π}{2}-α)}}$的值
(2)化简:$sin50°(1+\sqrt{3}tan10°)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁UB)∪A为(  )
A.{1,3}B.{2,3,4}C.{0,1,2,3}D.{0,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知a>b>0,c≠0,则下列不等式中不恒成立的是(  )
A.$\frac{a-b}{c}$>0B.ac2>bc2C.(a+b)( $\frac{1}{a}$+$\frac{1}{b}$)>4D.a2+b2+2>2a+2b

查看答案和解析>>

同步练习册答案