分析 由题意设出过M点的直线方程为y=kx+a,联立直线方程和抛物线方程,利用根与系数关系得到A,B两点的横纵坐标的积,由向量$\overrightarrow{OA}$•$\overrightarrow{OB}$的数量积大于0求得a的范围.
解答 解:由题意设直线l的方程为y=kx+a,
联立$\left\{\begin{array}{l}{y={x}^{2}}\\{y=kx+a}\end{array}\right.$,得x2-kx-a=0,
设A(x1,y1),B(x2,y2),
则x1+x2=k,x1x2=-a,
∴y1y2=(x1x2)2=a2.
∵$\overrightarrow{OA}$•$\overrightarrow{OB}$=x1x2+y1y2=a2-a>0,
解得a>1
故a的范围为(1,+∞),
故答案为:(1,+∞)
点评 本题考查了直线与圆锥曲线的关系,涉及直线与圆锥曲线关系问题,常采用联立直线与圆锥曲线,化为关于x的一元二次方程,利用根与系数关系求解,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{4}{3}$) | B. | $(0,\left.\frac{4}{3}]$ | C. | $[0,\right.\frac{4}{3})$ | D. | $[0,\left.\frac{4}{3}]\right.$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 向右平移$\frac{π}{12}$个单位长度 | B. | 向右平移$\frac{π}{6}$个单位长度 | ||
| C. | 向左平移$\frac{π}{12}$个单位长度 | D. | 向左平移$\frac{π}{6}$个单位长度 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com