精英家教网 > 高中数学 > 题目详情
2.实数a,b,c不全为0等价于为(  )
A.a,b,c均不为0B.a,b,c中至多有一个为0
C.a,b,c中至少有一个为0D.a,b,c中至少有一个不为0

分析 利用充要条件的意义即可得出.

解答 解:实数a,b,c不全为0等价于为a,b,c中至少有一个不为0,
故选:D

点评 本题考查了简易逻辑的有关知识,考查了推理能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.下列说法中,正确的有③④.(写出所有正确说法的序号)
①已知关于x的不等式mx2+mx+1>0的解集为R,则实数m的取值范围是0<m<4.
②已知等比数列{an}的前n项和为Sn,则Sn、S2n-Sn、S3n-S2n也构成等比数列.
③已知a>0,b>-1,且a+b=1,则$\frac{{a}^{2}+2}{a}$+$\frac{{b}^{2}}{b+1}$的最小值为$\frac{3+2\sqrt{2}}{2}$.
④在△DEF中,DE=2,EF=3,∠DEF=60°,M是DF的中点,N在EF上,且DN⊥ME,则$\overrightarrow{DN}$•$\overrightarrow{EF}$=$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.从含有4件正品、2件次品的6件产品中,随机抽取3件,则恰好抽到1件次品的概率(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\left\{\begin{array}{l}{x}^{2}+(4a-3)x+3a,x<0\\-sinx,0≤x<\frac{π}{2}\end{array}\right.$在定义域内为单调递减函数,则a的取值范围为(  )
A.(0,$\frac{4}{3}$)B.$(0,\left.\frac{4}{3}]$C.$[0,\right.\frac{4}{3})$D.$[0,\left.\frac{4}{3}]\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.$f(x)=Asin(ωx+φ)(A>0,|φ|<\frac{π}{2})$的图象如图所示,为了得到f(x)的图象,则只要将g(x)=cos2x的图象(  )
A.向右平移$\frac{π}{12}$个单位长度B.向右平移$\frac{π}{6}$个单位长度
C.向左平移$\frac{π}{12}$个单位长度D.向左平移$\frac{π}{6}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.曲线y=2lnx在点(e,2)处的切线与y轴交点的坐标为(0,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知$\frac{4+mi}{1+2i}$∈R,且m∈R,则|m+6i|=(  )
A.6B.8C.8$\sqrt{3}$D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若输入5,如图中所示程序框图运行后,输出的结果是(  )
A.1B.0C.-1D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.数列an=2n+1,其前n项和为Tn,若不等式nlog2(Tn+4)-λ(n+1)+7≥3n对一切n∈N*恒成立,则实数λ的取值范围为(  )
A.λ≤3B.λ≤4C.2≤λ≤3D.3≤λ≤4

查看答案和解析>>

同步练习册答案