精英家教网 > 高中数学 > 题目详情
14.已知点P是正三角形ABC所在平面外一点,PA=PB=PC=$\frac{2}{3}$,AB=1,则PC和平面ABC所成的角是(  )
A.90°B.60°C.45°D.30°

分析 作PO⊥平面ABC于O,则∠PCO为PC和平面ABC所成的角,由此能求出PC和平面ABC所成的角的大小.

解答 解:作PO⊥平面ABC于O,
∵P是正三角形ABC所在平面外一点,PA=PB=PC=$\frac{2}{3}$,AB=1,
∴由已知O为外心,且AB⊥OC,
∴∠PCO为PC和平面ABC所成的角,
∴OC=$\frac{2}{3}$×$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{3}$,PC=$\frac{2}{3}$,
∴cos∠PCO=$\frac{CO}{PC}$=$\frac{\sqrt{3}}{2}$,
∴∠PCO=30°.
∴PC和平面ABC所成的角是30°.
故选:D.

点评 本题考查线面角的求法,涉及到空间中线线、线面、面面间的位置关系,考查推理论证能力、运算求解能力,考查化归与转化思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知数列{an}的前n项和为Tn,且Tn=-an+$\frac{1}{2},n∈{N^*}$,设${b_n}+2=3{log_{\frac{1}{2}}}{a_n}({n∈{N^*}})$,数列{cn}满足cn=an•bn
(1)求数列{bn}的通项公式;
(2)求数列{cn}的前n项和Sn
(3)若cn≤$\frac{1}{4}{m^2}$+m+1对一切正整数n恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.底面为正方形的四棱锥,其一条测棱垂直于底面,则该四棱锥的三视图可以是下列各图中的(  )
A.(1)(3)B.(1)(4)C.(2)(3)D.(2)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某校高一某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏(阴影部分为破坏部分),其可见部分如图所示,据此解答如下问题:

(1)计算频率分布直方图中[80,90)间的矩形的高;
(2)若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份的分数在[90,100]之间的概率;
(3)根据频率分布直方图估计这次测试的平均分.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}满足${a_1}=\frac{1}{2}$,${a_{n+1}}=\frac{{2{a_n}}}{{1+{a_n}}},n∈{N^*}$.
(I)求证:数列$\left\{{\frac{1}{a_n}-1}\right\}$是等比数列,并求数列{an}的通项公式;
(II)令bn=$\frac{n}{{a}_{n}}$,(n∈N*),设数列{bn}的前n项和为Sn,求证:当n≥3时,Sn>$\frac{{n}^{2}}{2}$+4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.“log2x<1”是“x2<x”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知圆C:x2+y2+2x-2y=0的圆心为C,A(4,0),B(0,-2)
(Ⅰ)在△ABC中,求AB边上的高CD所在的直线方程;
(Ⅱ)求与圆C相切且在两坐标轴上的截距相等的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.我国古代数学典籍《九章算术》第七章“盈不足”中有一道两鼠穿墙问题:“今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠日一尺,大鼠日自倍,小鼠日自半,问何日相逢,各穿几何”,翻译过来就是:有五尺厚的墙,两只老鼠从墙的两边相对分别打洞穿墙,大、小鼠第一天都进一尺,以后每天,大鼠加倍,小鼠减半,则几天后两鼠相遇,这个问题体现了古代对数列问题的研究,现将墙的厚度改为1000尺,则需要几天时间才能打穿(结果取整数)(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.${∫}_{-1}^{1}$(x3+tanx+x2sinx)dx的值为0.

查看答案和解析>>

同步练习册答案