精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆是大于的常数)的左、右顶点分别为,点是椭圆上位于轴上方的动点,直线与直线分别交于两点(设直线的斜率为正数).

Ⅰ)设直线的斜率分别为 ,求证为定值.

Ⅱ)求线段的长度的最小值.

Ⅲ)判断存在点,使得是等边三角形的什么条件?(直接写出结果)

【答案】(Ⅰ)证明见解析;(Ⅱ) (Ⅲ)既不充分也不必要条件.

【解析】试题分析:

()由题意可得直线的斜率,直线的斜率据此计算则有为定值

()结合点的坐标求得MN的长度表达式,结合均值不等式的结论可得线段长度的最小值为

()结合圆锥曲线的性质可知存在点,使得是等边三角形的既不充分也不必要条件.

试题解析:

(Ⅰ)设,则,即

∴直线的斜率,直线的斜率

为定值

(Ⅱ)直线方程为,∴点坐标

直线方程为,∴点坐标

故线段长度的最小值为

(Ⅲ)存在点,使得是等边三角形的既不充分也不必要条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图甲所示, 是梯形的高, ,先将梯形沿折起如图乙所示的四棱锥,使得,点是线段上一动点.

(1)证明:

(2)当时,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}前n项和Sn满足:2Sn+an=1
(1)求数列{an}的通项公式;
(2)设bn= ,数列{bn}的前n项和为Tn , 求证:Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求函数在区间上的最大值和最小值;

(2)若在区间内,函数的图象恒在直线下方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是首项为19公差为-2的等差数列的前项和

1求通项

2是首项为1公比为3的等比数列求数列的通项公式及其前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定点,定直线 ,动圆过点,且与直线相切.

(Ⅰ)求动圆的圆心轨迹的方程;

(Ⅱ)过点的直线与曲线相交于 两点,分别过点 作曲线的切线 ,两条切线相交于点,求外接圆面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,已知直线的普通方程为,曲线的参数方程为为参数),设直线与曲线交于 两点.

(Ⅰ)求线段的长;

(Ⅱ)已知点在曲线上运动,当的面积最大时,求点的坐标及的最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}为等差数列,公差d≠0,其中 ,…, 恰为等比数列,若k1=1,k2=5,k3=17,求k1+k2+…+kn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆关于直线对称,圆心在第二象限,半径为

(Ⅰ)求圆的方程.

(Ⅱ)是否存在直线与圆相切,且在轴、轴上的截距相等?若存在,写出满足条件的直线条数(不要求过程);若不存在,说明理由.

查看答案和解析>>

同步练习册答案