精英家教网 > 高中数学 > 题目详情
15.已知定义在R上的函数f(x)的图象的对称轴为x=-4,且当x≥-4时,f(x)=2x-3,若函数f(x)在区间(k-1,k)(k∈Z)上有零点,则k的值为(  )
A.-8或-7B.-8或2C.2或-9D.-2或-8

分析 利用函数零点判定定理求出x≥-4时函数f(x)=2x-3的一个零点所在区间,再由对称性求出另一个零点所在区间得答案.

解答 解:当x≥-4时,f(x)=2x-3,
∵f(1)=2-3=-1<0,f(2)=22-3=1>0,
由函数零点存在性定理,可得函数f(x)=2x-3有一个零点在(1,2)内,此时k=2;
又定义在R上的函数f(x)的对称轴为x=-4,
由对称性可知,函数f(x)=2x-3有另一个零点在(-10,-9)内,此时k=-9.
∴k的值为2或-9.
故选:C.

点评 本题考查函数零点判定定理,考查了由对称性求对称点的坐标的方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.函数f(x)=sin(2x+$\frac{π}{3}$)图象的对称轴方程可以为(  )
A.x=-$\frac{π}{4}$B.x=$\frac{π}{8}$C.x=-$\frac{5π}{12}$D.x=-$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知椭圆E:$\frac{x^2}{18}+\frac{y^2}{9}$=1,斜率为1的直线交E于A,B两点,若AB的中点为P,O为坐标原点,则直线OP的斜率为(  )
A.-1B.$-\frac{1}{2}$C.$-\frac{1}{3}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=3x,且f-1(18)=a+2,g(x)=3ax-4x的定义域为区间[0,1],求:
(1)g(x)的解析式
(2)g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某班在5男生4女生中选择4人参加演讲比赛,选中的4人中有男有女,且男生甲和女生乙最少选中一人,则不同的选择方法有(  )
A.91种B.90种C.89种D.86种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数f(x)=2sin(ωx+$\frac{π}{3}$)(ω>0)的图象与x轴相邻两个交点间的距离为2,则实数ω的值为(  )
A.$\frac{1}{2}$B.C.πD.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.$y=sin3x-\sqrt{3}cos3x$图象的一个对称中心可以是(  )
A.(0,0)B.$(\frac{π}{3},0)$C.$(\frac{π}{6},0)$D.$(\frac{π}{9},0)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=1-x2,则函数$f(\frac{1}{f(2)})$的值为$\frac{8}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=$\frac{{{{(x+1)}^2}}}{{\sqrt{x+2}}}$的定义域是(-2,+∞).

查看答案和解析>>

同步练习册答案